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1 Motivation and aim

The methods and tools of modern state space representation based system and
control theory [1], [2], [3], [4] has matured nowadays mainly in the fields of
robust, LPV, and LQ control with numerous applications in formally difficult
areas, such as process and nuclear systems, etc. However, there is still a lack
of practically feasible techniques for highly nonlinear systems with a wide
operating domain, such as biochemical, biomechanical, or quantum systems.
This holds true despite the fact that there is a rapid development in the area
of nonlinear and stochastic system and control theory (see e.g. [1],[3]).

The present thesis treats two different system classes originating from dif-
ferent fields of physics. Tools of modern system and control theory are ap-
plied on them in such a way that their specialities are utilized to obtain prac-
tically feasible methods for problems that are computationally hard in the
general case.

The nonlinear nature of general process systems [5] makes their global
stability analysis hard. Using special nonlinear system model classes that are
still general enough to describe the dynamics of them might open the way
of handling them efectively . In this work the so-called quasi-polynomial
(QP) system class [6] [7], will be used for this purpose. Using the fact that
the structure of the Lyapunov function is known for this system class will
facilitate the global stability analysis of general process systems. Using the
results of stability analysis, the QP system class can be used for synthesizing
controllers which ensure the global stability of the closed loop system with
respect to the given Lyapunov function family [8]. A further speciality is, that
the state variables of process systems are typically concentrations, tempera-
tures, pressures, etc. which are easily measurable quantities so the feedback
control of them does not require state observers or estimators. Moreover, the
state variables are always positive, thus process systems together with their
QP representation form a sub-class of positive systems.

So far, only a few people (e.g. [9]) has tried to handle quantum mechan-
ical systems on the control theoretical basis. The aimed subproblem in this
work is reading quantum information, which asks for the design of state ob-
servers/estimators. The measurement of a quantum system has probabilistic
nature and turns the whole system to be stochastic, for which reliable state es-
timation methods must be developed [10]. One way is to apply the Bayesian
methodology to use a full probabilistic model and give a state estimate that
contains a lot of information about the state to be estimated. The other di-
rection to quantum state estimation is to develop a simple estimator which is
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applicable for a wide range of quantum systems and moreover it is easy to
compute.

2 Methods and Tools

In what follows, the basic notions, and most important tools used in the work
are summarized.

2.1 QP and LV models

Quasi-polynomial models are systems of ODEs of the following form

ẋi = xi

(
λi +

m

∑
j=1

Ai, j

n

∏
k=1

xB j,k
k

)
, i = 1, . . . ,n. (1)

where x ∈ int(Rn
+), A ∈ Rn×m, B ∈ Rm×n, λi ∈ R, i = 1, . . . ,n. Furthermore,

λ = [λ1 . . . λn]T . It was shown in [6], that non QP nonlinear systems having
smooth nonlinearities can easily be embedded into QP form by introducing
new state variables instead of the non QP nonlinearities.

The above family of models is split into classes of equivalence [7] accord-
ing to the values of the products M = B ·A and N = B ·λ . The Lotka-Volterra
form gives the representative elements of these classes of equivalence. If
rank(B) = n, then the set of ODEs in (1) can be embedded into the following
m-dimensional set of equations, the so called Lotka-Volterra model:

ż j = z j

(
N j +

m

∑
i=1

M j,izi

)
, j = 1, . . . ,m (2)

where
M = B ·A, N = B ·λ ,

and each z j represents a so called quasi-monomial:

z j =
n

∏
k=1

xB j,k
k , j = 1, . . . ,m. (3)

Henceforth it is assumed that x∗ is a positive equilibrium point, i.e. x∗ ∈
int(Rn

+) in the QP case and similarly z∗ ∈ int(Rm
+) is a positive equilibrium

point in the LV case. For LV systems there is a well known candidate Lya-
punov function family [8],[11], which is in the form:

V (z) =
m

∑
i=1

ci

(
zi− z∗i − z∗i ln

zi

z∗i

)
, (4)
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ci > 0, i = 1 . . .m,

where z∗ = [z∗1, . . . ,z
∗
m]T is the equilibrium point corresponding to the equi-

librium x∗ of the original QP system (1). The time derivative of the of the
Lyapunov function (4) is:

V̇ (z) =
1
2
(z− z∗)(CM +MTC)(z− z∗) (5)

where C = diag(c1, . . . ,cm) and M is the invariant characterizing the LV form
(2).

2.2 Input-affine QP system models

The general form of the state equation of an input-affine QP system model
with p-inputs is as follows:

ẋi = xi

(
λ0i +

m

∑
j=1

A0i, j

n

∏
k=1

xB j,k
k

)
+

(6)

+
p

∑
l=1

xi

(
λli +

m

∑
j=1

Ali, j

n

∏
k=1

xB j,k
k

)
ul

where
i = 1, . . . ,n, A0,Al ∈ Rn×m, B ∈ Rm×n,

λ0,λl ∈ Rn, l = 1, . . . , p.

The corresponding input-affine Lotka-Volterra model is in the form

ż j = z j

(
N0 j +

m

∑
k=1

M0 j,kzk

)
+

p

∑
l=1

z j

(
Nl j +

m

∑
k=1

Ml j,kzk

)
ul (7)

where

j = 1, . . . ,m, M0,Ml ∈ Rm×m, N0,Nl ∈ Rm, l = 1, . . . , p,

and the parameters can be obtained from the input-affine QP system’s ones
in the following way

M0 = B ·A0
N0 = B ·L0
Ml = B ·Al
Nl = B ·λl

l = 1, . . . , p.

(8)

If the inputs applied on (6) are quasi-polynomial functions of the state vari-
ables, then it is easy to see, that the closed loop system will also be in QP
form.
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2.3 The time-reparametrization transformation

Let ω = [ω1 . . . ωn]T ∈ Rn. It is shown e.g. in [11] that the following
reparametrization of time

dt =
n

∏
k=1

xωk
k dt ′ (9)

transforms the original QP system into the following (also QP) form

dxi

dt ′
= xi

m+1

∑
j=1

Ãi, j

n

∏
k=1

xB̃ j,k
k , i = 1, . . . ,n (10)

where Ã ∈ Rn×(m+1), B̃ ∈ R(m+1)×n and

Ãi, j = Ai, j, i = 1, . . . ,n; j = 1, . . . ,m (11)
Ãi,m+1 = λi, i = 1, . . . ,n (12)

and

B̃i, j = Bi, j +ω j, i = 1, . . . ,m; j = 1, . . . ,n (13)
B̃m+1, j = ω j, j = 1, . . . ,n. (14)

It can be seen that the number of monomials is increased by one and vector
λ̃ is zero in the transformed system.

2.4 Linear and bilinear matrix inequalities

A (non-strict) linear matrix inequality (LMI) is an inequality of the form

F(x) = F0 +
m

∑
i=1

xiFi ≤ 0, (15)

where x ∈ Rm is the variable and Fi ∈ Rn×n, i = 0, . . . ,m are given symmet-
ric matrices. The inequality symbol in (15) stands for the negative semi-
definiteness of F(x). If the equality is not allowed, then the LMI is termed
strict.

One of the most important properties of LMIs is the fact, that they form a
convex constraint on the variables, i.e. the set F = {x | F(x)≤ 0} is convex
and thus many different kinds of convex constraints can be expressed in this
way [12], [13]. It is important to note that a particular point from the convex
solution set F can be selected using additional criteria (e.g. different kinds
of objective functions) [12]. Standard LMI optimization problems are e.g.
linear function minimization, generalized eigenvalue problem, etc.
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Various problems in system- and control theory can be written up as a set
of linear matrix inequalities. For example, the Lyapunov equation connected
to the global stability of LTI systems. But they also appear in the context of
linear parameter-varying (LPV) systems, or within µ-analysis there are also
LMIs solved [14] .

On the other hand, a bilinear matrix inequality (BMI) is a diagonal block
composed of q matrix inequalities of the following form

Gi
0 +

p

∑
k=1

xkGi
k +

p

∑
k=1

p

∑
j=1

xkx jKi
k j ≤ 0, i = 1, . . . ,q (16)

where x ∈ Rp is the decision variable to be determined and Gi
k, k = 0, . . . , p,

i = 1, . . . ,q and Ki
k j, k, j = 1, . . . , p, i = 1, . . . ,q are symmetric, quadratic ma-

trices.
The main properties of BMIs are that they are non-convex in x (which

makes their solution numerically much more complicated than that of linear
matrix inequalities), and their solution is NP-hard [15], so the size of the
tractable problems is limited. Similarly to the LMIs, additional criteria can
be used to select a preferred solution point of a feasible BMI from its solution
set.

2.5 States of N-level quantum systems

For describing the states of finite quantum systems the so-called density ma-
trices are used in the sequel. Density matrices χ are statistical operators
acting on the Hilbert space H , they are positive semidefinite self-adjoint
matrices having unit trace:

χ ∈ Cn, χ ≥ 0, χ = χ∗, Trχ = 1 (17)

A density operator describes a pure state if it is a rank one projection, i.e.

χ = χ2.

Two level quantum systems (i.e the dimension of the underlying Hilbert
space is 2) are termed qubits since they are the quantum generalization of
bits. Using the Pauli matrices as basis among the 2×2 density matrices, the
so-called Bloch vector notation can be used to represent states of qubits:

χ =
1
2
(I + x1σ1 + x2σ2 + x3σ3) (18)
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where σ1,σ2 and σ3 are the so-called Pauli matrices [16], xi ∈ R, i = 1,2,3.
This way, the state of a qubit can be represented by a vector x = [x1,x2,x3]T

of R3 instead of the density matrix χ . The positivity property of the density
matrices transforms to the constraint ||x|| ≤ 1 in the Bloch vector case.

The most general parametrization of the density matrix that suits for all
quantum systems uses the matrix elements as parameters:

χ =
N

∑
k=1

xkkEkk + ∑
i< j

(
xi j(Ei j +E ji)+ x ji(iEi j− iE ji)

)
, (19)

where Ei j are the matrix units (full of zeros except for the i, j-th element
which is one). This way, the state of an N-level system can be given with N2

real parameters. It can be seen that in contrast with the Bloch-parametrization
(18) this parametrization does not ensure the unit trace for the density, so a
reasonable modification is:

χ =
N−1

∑
k=1

xkkEkk +

(
1−

N−1

∑
k=1

xkk

)
ENN +

(20)
+∑

i< j

(
xi j(Ei j +E ji)+ x ji(iEi j− iE ji)

)
.

This offers the use of a generalization of the Bloch-vector space [17]. The
Bloch-vector of an N-level quantum system is a vector of RN2−1.

2.6 Observables and their measurement

The measurable physical quantities of quantum systems (the so called ob-
servables) are represented by self-adjoint operators of H (i.e. self-adjoint
matrices of CdimH ×dimH ) [18].

The measurement of an observable O has a probabilistic nature. The pos-
sible outcomes of the measurement are the different λ eigenvalues of O, the
corresponding probability is

Prob(λi) = TrEiχE∗i ,

where Ei are the projections onto the subspace spanned by the eigenvector
corresponding to λi, i.e.

∑
i

Ei = I, E2
i = Ei.
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Moreover, the state of the system S after measuring O, and having the out-
come λi changes to

χ ′ =
EiχE∗i

TrEiχE∗i
that means that the measurement has lost its good property of being a pas-
sive operation known from classical physics. The measurement changes the
actual state of the quantum system.

The above measurement is called von Neumann measurement, the most
popular example of it in the 2 level case is the spin measurement, i.e. the
measurement of the Pauli matrices as observables.

A more general measurement type is the so-called POVM (positive oper-
ator valued measurement), see [19].
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3 New scientific results

The main scientific contributions of the dissertation are summarized in the
following thesis points.

Thesis 1. The global stability analysis of nonlinear process systems being in
quasi-polynomial representation has been formulated as a linear matrix
inequality. The chance to prove global stability has been extended by
time-reparametrization where the scaling factors were determined and
the global stability is proved by solving a bilinear matrix inequality.
([O1], [O2], [O3], [O4])
It was shown, that the negative definiteness condition of the Lyapunov
function of QP and LV systems is equivalent to a linear matrix inequal-
ity, thus the stability analysis of QP systems (and general nonlinear pro-
cess systems embedded into QP form) is equivalent to the feasibility of
a LMI [13]. The LMI is non-strict if the model has been obtained by
embedding.

It has been shown, that time-reparametrization transformation introduces
a re-scaling in the QP system’s quasi-monomials, such that the global
stability of transformed QP system is equivalent to that of the origi-
nal one. This way the global stability analysis has been extended to
a wider class of QP systems by embedding the parameters of the time-
reparametrization transformation into the global stability analysis, when
one has to solve a bilinear matrix inequality.

Thesis 2. The globally stabilizing quasi-polynomial state feedback design
problem for quasi-polynomial systems has been expressed as a bilin-
ear matrix inequality. The problem has been reformulated so that it can
be solved by an existing iterative LMI algorithm.
A supplementary feedback controller that shifts some coordinates of the
closed loop systems’s steady state has been computed from a linear set
of equations. Conditions on the number of shiftable coordinates were
also given.
([O5], [O11])
A globally stabilizing state feedback design problem was formulated
using the global stability analysis results of Thesis 1. The problem has
been solved as a bilinear matrix inequality feasibility problem, having
two groups of variables, one for the parameters of the Lyapunov func-
tion and another for the feedback gains. The proposed method does
not utilize the objective function of the BMI optimization problem (16),
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thus it is a possible point to introduce some performance or robustness
specifications.
If one is to solve just the BMI feasibility without additional criteria, the
problem has been reformulated so that an existent iterative LMI algo-
rithm is suitable for its’ solution.

The stabilizing state feedback may shift the closed loop system’s equi-
librium points into unwanted values that’s why the possibilities of de-
signing an additional feedback that (partially) sets back the original
steady state were proposed. It was shown that under certain conditions
on the closed loop system’s Lotka-Volterra coefficient matrix it is pos-
sible to design such a controller. It’s parameters were determined from
a linear set of equations. In most cases, however it is only possible to
redesign the steady state for only a few number of state coordinates.

Thesis 3. A Bayesian state estimation scheme was developed for a single
quantum bit using Bloch parametrization. As a measurement scheme,
the von Neumann measurement of the Pauli spin operators was used.
Using the independency of the applied measurements, the problem was
solved componentwise.
The estimator was improved in order to avoid estimates laying out of the
state space by an additional constraint.
([O6], [O7])
A relaxed state estimation problem was solved for a quantum bit using
Bayesian methodology. The estimation was based on the Bloch vec-
tor representation of quantum states and on the von Neumann measure-
ments of the three Pauli spin operator.

Since the three measurements are incompatible, the problem was re-
garded to be an independent estimation of the three Bloch vector com-
ponents. The total estimate was obtained by multiplying the three prob-
ability density functions. The obtained Bayesian state estimator per-
formed weak for estimation pure states, so an additional constraint was
added to the problem. This step resulted in an estimator that always
gives a physically meaningful result, however it’s computation is more
difficult.

Using the simulator Spinsim [O8] the constrained and the unconstrained
Bayesian state estimation methods was compared. Their difference was
outstanding in the case of estimating a pure state, or estimating based
on a small measurement data.
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Thesis 4. A novel, componentwise quantum state estimation scheme was de-
veloped for N-level quantum mechanical systems. The measurement
data were obtained from the von Neumann measurement of N2− 1 in-
dependent observables. The estimator uses the measurement data of the
above measurement to determine the N2− 1 parameters of the density
matrix.
An algebraic and a geometric method was proposed to force the estima-
tor to produce physically meaningful result.
The effectiveness of the estimator was compared to other estimation
schemes using the mean squared error matrix.
([O8], [O9], [O10])
The quantum state estimation problem refined for quantum systems was
solved for N-level quantum systems, not only for qubits.

The collection of observables consists of 3 group of von Neumann mea-
surements. The basis of the estimation scheme is the Bloch parametriza-
tion used for general finite quantum systems. The estimator consists of
N2− 1 equations for the N2− 1 parameters of the density matrix, and
gives a point estimate based on the relative frequencies of certain out-
comes of the observables.

It has been proven that the estimator is unbiased but suffers from the ten-
dency to give false estimates so a modification was necessary to respect
the positivity constraint of density matrices (17) .

It was shown that for invertible states the constrained estimator con-
verges to the unconstrained one when the size of the measurement data
increases. If the real state is on the boundary of the state space, then
the unconstrained estimator is useless, since it is always necessary to
correct its result by one of the two constraining methods proposed.

The effectiveness of the unconstrained estimator was compared to two
different estimation schemes available in the literature. The comparison
was based on their mean quadratic error matrices. It has been shown
that the proposed scheme is more efficient than the other two.
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5 Application areas, directions for future work

Quasi-polynomial system representation (1) is a good tool for describing bio-
chemical systems given in the form of reaction kinetic networks. The state
variables of such systems are typically concentrations, i.e. they are also pos-
itive systems. These reaction kinetic networks are given by their mass action
law description. This special form enables to apply the results of classical
reaction kinetics together with the results of thesis points 1 and 2.

On the other hand, mixed mechanical-thermodynamical systems (e.g. gas
turbines) can also be embedded into QP representation, and with a Lyapunov
function (5) their global stability can be investigated. Note, that using a
quadratic Lyapunov function, the region of their (local) stability can be con-
veniently determined by solving LMIs.

By formulating robustness and/or performance specifications as an objec-
tive function it will be possible to prescribe the quality of the controller to
be designed. The selection of the feedback controller structure is also an im-
portant question since a wise choice can decrease the size of the BMI to be
solved. That’s why controller structure selection based on graph theoretic
methods is another direction of future work.

The controller design BMI with the built-in robustness specifications and
the controller structure design together would extend the controller design
problem to a complete methodology for the stabilizing control of nonlinear
process systems given in QP representation.

The measure-and-throw philosophy applied in the problem statement of
quantum state estimation is in good agreement with the measurement of the
polarization of photons in a photon beam, so the quantum state estimation
methods presented in thesis points 3 and 4 can be applied for photon source
identification. This way, the state of the system corresponds to the photon
polarization, and since the polarization of photons emitted by source is not
varying, there is no need to deal with the dynamics of the system.

After developing reliable state estimation methods for the quantum state
estimation problem supposing no dynamics the next step would be to modify
the developed methods for quantum process tomography. Its problem state-
ment is as follows: known quantum states are sent through a quantum channel
with unknown parameters and the states leaving the channel are measured.
Give an estimate of the channel’s parameters.

Another possible way is to include quantum dynamics to the system whose
state is to be estimated. Of course, in this case a totally different kind of
measurement should be applied that influences the system not as rough as the
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von Neumann measurement. The drawback of such measurement scheme
might be the fact that it would not provide as much information as the von
Neumann, or POVM type.

After having a correct method for quantum state estimation that involves
also the dynamical model of the quantum system, the way is clear towards
quantum control.
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