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a B́ıráló Bizottság elnöke
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Tartalmi kivonat

Állapotbecslés és állapotvisszacsatolás kvázi-

polinomiális és kvantummechanikai rendszerekre

A rendszer- és iránýıtáselmélet állapottér reprezentáción alapuló módszereit manap-
ság olyan területeken használják, mint a robusztus, LPV, és LQ iránýıtás. Ezek az
eszközök olyan nehezen kezelhető rendszerekre is alkalmazhatóak, mint a folyamat-
rendszerek, nukleáris rendszerek, stb. Mindazonáltal, széles működési tartománnyal
rendelkező erősen nemlineáris rendszerekre, mint a biomechanikai, biokémiai, vagy
kvantum rendszerek, jelenleg sincsenek jól alkalmazható technikák.

A szerző a disszertációban két - a fizika különböző területeiről származó rendszer-
osztályon alkalmazta a modern iránýıtáselmélet eszközeit. Kihasználva a speciális
rendszerosztályok nyújtotta lehetőségeket, sikerült gyakorlatilag megvalóśıtható mód-
szereket adni olyan problémákra, amelyek az általános esetben nehéznek, illetve
számı́tásigényesnek bizonyultak.

A folyamatrendszerek globális stabilitásvizsgálatát nemlineáris jellegük teszi ne-
héz feladattá. Olyan speciális nemlineáris rendszermodell osztályok alkalmazása,
melyek elég általánosak a folyamatrendszerek dinamikus viselkedésének léırására,
megkönnýıtené ezen rendszerek iránýıtását. A szerző a disszertációban az úgyneve-
zett kvázipolinomiális (QP) rendszerosztályt alkalmazza a fenti célra. Kihasználva,
hogy QP rendszerekre a Ljapunov függvény alakja ismert, leegyszerűsödik az általá-
nos folyamatrendszerek globális stabilitásvizsgálata. A kvázipolinomiális rendszer-
osztály seǵıtségével olyan szabályozótervezési feladatot is feĺır, amely biztośıtja a
zárt rendszer globális stabilitását egy adott Ljapunov függvény családra nézve.

Mindezidáig csupán néhány szerző próbálta meg a kvantummechanikai rendsze-
reket rendszerelméleti oldalról megközeĺıteni. A disszertációban kitűzött probléma
kvantuminformáció kiolvasásával kapcsolatos. Kvantummechanikában a mérés va-
lósźınűségi jellegű művelet, ami a teljes rendszert sztochasztikussá teszi, ezért meg-
b́ızható állapotbecslési módszerekre van szükség. Az egyik út a bayesi módszertan
alkalmazása, amely egy teljes valósźınűségi modellt használ, és az ez alapján számolt
becslő sok statisztikai információval szolgál a kérdéses állapotról. A másik irányt egy
egyszerű pontbecslő kifejlesztése jelenti, amely a kvantumrendszerek egy szélesebb
osztályára alkalmazható, továbbá a számı́tásigénye nem túl nagy.



Abstract

State estimation and state feedback control in quasi-

polynomial and quantum mechanical systems

The goal of this dissertation is to apply system and control theory to two system
classes originating from different fields of physics: process systems and quantum
mechanical systems.

Using the quasi-polynomial system representation it is possible to describe the
dynamic behavior of general nonlinear process systems. It is shown in the work,
that global stability analysis for such systems can be performed algorithmically,
moreover, a globally stabilizing state feedback design method is given.

Only a few authors tried to apply control theory in quantum mechanical fields.
The aimed problem of the second part of the dissertation is quantum state esti-
mation, where the state of a quantum system is to be determined from quantum
measurement. The problem is solved in two different ways.



Zusammenfassung

Zustandschätzung und Rückkoppelung für quasi-

polynomischen und quantenmechanischen Systemen

Das Primärziel dieser Dissertation ist die Anwendung der Ergebnisse der System-
und Regelungstheorie auf zwei verschiedene Systemsklassen der Physik: Prozess-
Systeme und quantenmechanische Systeme.

Mit der Hilfe der quasi-polinomischen Systemklassen kann man die dynamischen
Verhaltensweise des allgemeinen Prozesssysteme beschreiben. Der Autor will in
der Dissertation zeigen, dass die globale Stabilitätsprüfung des quasipolinomischen
Systemen algorithmisch ausgeführt werden kann. Ausserdem demonstriert er eine
global stabilisierende Rückkoppelungs-Planungsmethode.

Bisher haben nur Wenige versucht die Systemtheorie im quantummachanischen
Bereich anzuwenden. In dem zweiten Teil der Dissertation sind Lösungsmöglichkeiten
des Problems der Zustandschätzung vom quantummechanischen Messungen gezeigt.
Zur Erzielung dieser Lösung muss der Systemzustand vom Quantenmessungen aus-
wertet werden. Der Autor zeigt zwei Methoden für die Lösung der Aufgabe.
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papers for his help and advices. I would like to thank Dr. Dénes Petz for his help
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Chapter 1

Introduction

Discovering the world is interesting,
useful, delightful, terrifying or edifying;

discovering ourselves is the greatest journey,
the most terrifying discovery and the most edifying of encounters.

/Sándor Márai/

Analysis and control of general nonlinear and stochastic systems is a difficult area
with many computationally hard problems. However, in special cases by using
special system classes which exploit the physical characteristics of the examined
system, feasible results can be achieved.

The present work connects two topics with different special system class and
slightly different focus, that are originated from different fields of physics. However,
they are connected through system- and control theory, and they represent two
special, yet practically important nonlinear and stochastic system classes.

One of them is the class of lumped process systems with smooth nonlinearities
that can be embedded into the class of quasi-polynomial systems. The other one is
the class of finite quantum systems.

1.1 Background and motivation

Process systems appearing in practice [23] are difficult to handle since there are no
universal methods which give a complete framework for their dynamical analysis,
and synthesis [44]. That’s why it would be of great importance to develop methods
which are general enough to handle a wide range of process systems, or to find a
representation that’s suitable for describing almost all process systems. At the same
time, process systems form a relatively simple nonlinear system class with smooth
nonlinearities that are relatives of systems with polynomial nonlinearities. This is,
why the quasi-polynomial system class has been selected as a case study for a class
of ”easy” nonlinear systems.

On the other hand, one of the biggest challenge of present days is the built of
a quantum computer which would make some special problems easier to solve (e.g.
prime factorization). These problems are tackled by quantum computation [1] and
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quantum cryptography [5]. While classical computers manipulate classical informa-
tion represented by systems obeying classical physics, quantum computers would
modify, write, read quantum information which can be represented by quantum me-
chanical systems. It means, that in order to be able to read quantum information
we must be able to guess the actual properties of a quantum mechanical system
from measurements performed on it [24].

From the system theoretical point of view, even the simplest quantum systems
are unusual stochastic systems, where the stochastic nature is caused by the mea-
surements that act as a disturbance to the system. This property causes that quan-
tum systems represent a real challenge for everyone who attempts to solve even the
simplest control-related problem for them.

Modern control methods for nonlinear and/or stochastic systems rely on the
concept of state and apply state-space models. Therefore, state estimation and
state feedback controller design are key problems in system and control theory.

1.2 System- and control theory

The general notion of system allows us to treat physical objects originating from
various fields of life: automotive systems, chemical processes, nuclear powerplants,
etc. System- and control theory (see Appendix A.1 for introduction of some basic
notions, [2], or [9] for a deeper insight) allows us to examine and modify systems
with mathematical tools.

Nonlinear systems

A wide class of dynamical systems can be represented by the following state space
model [64]:

ẋ(t) = f(x(t)) +

p
∑

i=1

gi(x(t))ui(t) (1)

y(t) = h(x(t)) x(t0) = x0,

where x(t) ∈ R
n, u(t) = (u1(t), u2(t), . . . , up(t))

T ∈ R
p and y(t) ∈ R

q,

f : R
n → R

n, gi : R
n → R

n, i = 1, . . . , p, h : R
n → R

q

are nonlinear functions. What makes (1) attractive is the fact that although the
system is nonlinear in the states, it is linear in its inputs.

Dynamical analysis of nonlinear systems needs advanced mathematical tools [64],
[29]. Global stability analysis of nonlinear systems calls for the searching of a suitable
Lyapunov function V with the following properties:

• scalar valued function: V : R
n → R

+

• positive: V (x(t)) > 0

• decreasing in time: d
dt

V (x(t)) < 0
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Although the form of the Lyapunov function is not known for a general nonlinear
system (1), for some special system class (see Appendix A.1.1) it is possible to
achieve results.

State feedback control

Applying control to the system makes it possible to modify its dynamical properties,
and behavior. In most cases the control aim is reached by using feedback, i.e. the
output signal is fed back to the input through a controller (see figure 1). In most
cases, the structure of the controller is a state feedback, which means, that the
control input is determined as a function of the states:

u(t) = k(x(t)), k : R
n → R

p. (2)

This implies a problem in the general case, since it is only possible to measure the
outputs of the system. It explains the additional unit (the state estimator/observer)
before the controller that computes the state signal from the output, as it can be
seen in figure 1.

System

State 
estimator /
observer

State 
feedback

Inputs   u Outputs  y

States  x

x~

Figure 1: State feedback control

State estimation

It was mentioned above, that most control techniques apply state feedback. This
calls for a method that determines the actual state x of the system using the sup-
posed system model and measured input-output data corrupted by some noise ac-
cording to measurement devices. Such a method is called state estimation.

The state estimator is a mapping from the set D of possible measurement data
to the state space:

x̂ = l(u, ỹ), l : D → R
n, (3)

where x̂ denotes the estimate of the state x, ỹ stands for the measured (and possibly
noisy) output. A well known, and widely used tool for state estimation is the
Kalman-filter [32].

Of course, a good estimate x̂ should meet some requirements. The first one
is unbiasedness which means, that the expected value of the estimate x̂ equals to
the real state x. Moreover, a consistent estimate is needed, i.e. an estimate that
converges to the real state as the number of measurements increases.
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System parameter estimation

Most of the controller design and state estimation methods need the dynamical
model of the system, since the parameters of the controller and/or the state esti-
mator/observer are computed from the system parameters. Estimating the model
parameters [52], [54] is also a basis of system diagnostics since different parameter
values may refer to certain faults of the plant.

The two fundamental methods of parameter estimation are the least squares
estimation and the bayesian parameter estimation, they are summarized in the Ap-
pendix A.1.4. Whilst the least squares (LS) estimation is based on minimizing the
norm of the model error with a given parameter set, bayesian method uses a stochas-
tic model of the system in the form of a conditional probability density function and
gives more statistical information about the model parameters.

1.3 Problem statement and aims

The present thesis treats two different system classes originating from fields that are
far away from each other. Tools of modern system and control theory are applied on
them in such a way that their specialities are utilized to obtain practically feasible
methods for problems that are computationally hard in the general case.

The nonlinear nature of general process systems makes their global stability
analysis hard, however, in case of industrial process systems, like fermentation it
is crucial to be able to prove the stability of a system to be implemented. Using
nonlinear system model classes (more special than (1)) that is still general enough
to describe the dynamics of them it might be easier to handle them.

In this work the so-called quasi-polynomial (QP) system class will be used for
this purpose. QP systems has a very advantageous property, namely, the structure of
their Lyapunov function is known. Using this fact will facilitate the global stability
analysis of general process systems since it is only necessary to find suitable param-
eters of a Lyapunov function of a given form in order to prove global asymptotic
stability.

As a next step, the QP system class will be used for synthesizing controllers
which ensure the global stability of the closed loop system with respect to the given
Lyapunov function family. Using the fact, that with a suitable feedback the closed
loop system still belongs to the class of QP systems, the same type of Lyapunov
function can be used.

Note, that the state variables of process systems are typically concentrations,
temperatures which are measurable quantities so the feedback control of them does
not require state observers or estimators.

So far, only a few people (e.g. [38]) has tried to handle quantum mechanical
systems on the control theoretical basis. The aimed subproblem of reading quantum
information asks for the design of state observers/estimators. As it will be shown
later in chapter 5 the measurement of a quantum system has probabilistic nature
and turns the whole system to be stochastic (see (134) in Appendix A.1.1), reliable
state estimation methods must be developed.

One way is to apply the Bayesian methodology (see Appendix A.1.4 for the basic
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notations of the Bayesian parameter estimation problem) to use a full probabilistic
model and give a state estimate that holds a lot of information about the state to
be estimated.

The other direction to quantum state estimation is to develop a simple estimator
which is applicable for a wide range of quantum systems and moreover it is easy to
compute.

1.4 Thesis structure

This work is structured as follows. Present chapter clarifies the notations used
throughout the work, and a short overview on system- and control theory is also
presented here.

The results presented in this thesis are structured in two main parts. Part I is
dedicated to quasi-polynomial model based dynamical analysis and control of process
systems. Within this, chapter 2 gives an introduction to quasi-polynomial systems
and their connection to nonlinear process systems. Chapter 3 links the global sta-
bility analysis of quasi-polynomial systems to linear matrix inequalities. A bigger
chance on proving global stability can be reached by the time-reparametrization
transformation, which is also presented here. Chapter 4 uses the results of the pre-
vious chapter and deals with the design of a state feedback controller that globally
stabilizes the system with respect to an entropy-like Lyapunov function.

The fundamental notions of quantum mechanics together with the proposed
results pertaining to the state estimation of quantum systems are presented in part
II. Within this, the basics of quantum mechanics used in the later chapters are
summarized in chapter 5. The next two chapters concentrate on the state estimation
of quantum mechanical systems. Chapter 6 applies Bayesian methodology to the
determination of states of single quantum bits. A more general class of quantum
systems is treated in chapter 7 by a simple but effective estimation procedure.

At the end of each chapter containing new results, a summary is presented. The
own results are written in italic typeface. The corresponding publications are cited
also in the title of each section.

Finally, chapter 8 summarizes all results, and the four suggested thesis points
are also presented here together with my own papers. The future plans are also
mentioned in chapter 8.

In the Appendix, one can find a brief summary of system- and control theory
(Appendix A.1). Appendix A.2 the structure of N -level quantum systems’ Bloch
vector space is detailed. Afterwards some examples connected to quasi-polynomial
feedback design are given (Appendix A.3). In Appendix A.4, linear matrix inequal-
ities, bilinear matrix inequalities are discussed together with the basic properties of
the tensor product. The function reference of the quantum system simulator called
Spinsim can be found in Appendix A.6.
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1.5 General notations

The notations and abbreviations used throughout the work are summarized in this
section. Since we are treating two fields in a common system theoretical framework,
it is important to use a strict notation which makes it easier to find the connections
between the two parts. The most important notations are listed below.

Notation - Meaning
x ∈ X - x is an element of set X
x /∈ X - x is not an element of set X
X ⊂ Y - X is a subset of Y
∅ - empty set
∪ - union
∩ - intersection
R - set of real numbers
C - set of complex numbers
R

n - n dimensional real space
A - matrix
AT - transpose of matrix A
A∗ - conjugate transpose of matrix A
Ai,j - (i, j)-th entry of matrix A
Ak - k-th element in a series of matrices A1, A2, . . .
I - unit matrix of appropriate size I = diag(1, . . . , 1)
Eij - square matrix of appropriate size whose (i, j)-th

entry is 1, all the others are 0
TrA - trace of matrix A
detA - determinant of matrix A
A ⊗ B - tensor product of matrices A and B
A ◦ B - Hadamard product of matrices A and B,

i.e. (A ◦ B)i,j = Ai,jBi,j

c - scalar, or vector
ci - i-th element of vector c
cT - transpose of vector c
H - Hilbert space
|x〉 - vector from a Hilbert space, a ket state
〈x| - a bra state according to the ket |x〉
S - system operator
x(t), or x - state of a given system,

or a Bloch vector of a quantum mechanical system
χ - density matrix
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Notation - Meaning
Prob(ω) - probability of event ω
E ξ - expectation value of random variable ξ
u(t), or u - input of a given system
y(t), or y - output of a given system
ẋ = dx

dt
- time derivative of x

∂f(x)
∂xi

- i-th partial derivative of f(x)

p(.) - probability density function
Dk - measurement data obtained from k measurements

The abbreviations used in the sequel are the followings.

Abbreviation - Meaning
QP - quasi-polynomial
LV - Lotka-Volterra
GLV - generalized Lotka-Volterra
LS - least squares
RHS - right hand side
LMI - linear matrix inequality
ILMI - iterative LMI
BMI - bilinear matrix inequality
LTI - linear time invariant
CSTR - continuously stirred tank reactor
POVM - positive operator valued measurement
p.d.f. - probability density function
iff - if and only if
s.t - such that

Throughout the thesis, my own papers are cited in the form [Oi], while other
publications are cited as [j].
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Part I

QP systems
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Process systems are highly nonlinear systems due to some special features taking
place in them [23]. Quasi-polynomial and Lotka-Volterra models have proved to be
one of the candidates for generally applicable canonical forms of nonlinear process
system models since the majority of smooth nonlinear systems occurring in practice
can be transformed into these forms.

The aim of the first part is to utilize the quasi-polynomial and Lotka-Volterra
representation to stabilizing control of process systems. Before formulating the
feedback design problem the global stability analysis will be solved.
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Chapter 2

Basic notions on quasi-polynomial
systems

Present chapter gives a theoretical summary and a literature overview of part I.
Quasi-polynomial systems are introduced in section 2.1. Section 2.2 deals with the
conditions and the algorithm of embedding general nonlinear process systems into
quasi-polynomial form. At the end of the chapter a brief review of earlier works
connected to the representation and stability analysis of quasi-polynomial systems
is given (section 2.3).

2.1 Quasi-polynomial and Lotka-Volterra systems

The elementary notions in the field of quasi-polynomial (QP) and Lotka-Volterra
(LV) systems are introduced in this chapter. In order to emphasize the similarity of
QP and LV systems, QP systems are also called generalized Lotka-Volterra (GLV)
systems.

2.1.1 QP models

Quasi-polynomial models are systems of ODEs of the following form

ẋi = xi

(

λi +
m∑

j=1

Ai,j

n∏

k=1

x
Bj,k

k

)

, i = 1, . . . , n. (4)

where x ∈ int(Rn
+), A ∈ R

n×m, B ∈ R
m×n, λi ∈ R, i = 1, . . . , n. Furthermore,

λ = [λ1 . . . λn]T . The above model belongs to the class of nonlinear systems
(131), see Appendix A.1.1. Let us denote the equilibrium point of interest of (4)
as x∗ = [x∗

1 x∗
2 . . . x∗

n]T . Without the loss of generality we can assume that
Rank(B) = n and m ≥ n (see [28]).

2.1.2 Lotka-Volterra models

The above family of models is split into classes of equivalence [27] according to the
values of the products M = B · A and N = B · λ. The Lotka-Volterra form known
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from the field of population biology [42], [65], gives the representative elements of
these classes of equivalence. If rank(B) = n, then the set of ODEs in (4) can be
embedded into the following m-dimensional set of equations, the so called Lotka-
Volterra model:

żj = zj

(

Nj +
m∑

i=1

Mj,izi

)

, j = 1, . . . ,m (5)

where
M = B · A, N = B · λ,

and each zj represents a so called quasi-monomial :

zj =
n∏

k=1

x
Bj,k

k , j = 1, . . . ,m. (6)

2.1.3 Input-affine QP system models

An input-affine nonlinear system model (1) is in QP-form if all of the functions f , g
and h are in QP-form. Then the general form of the state equation of an input-affine
QP system model with p-inputs is:

ẋi = xi

(

λ0i
+

m∑

j=1

A0i,j

n∏

k=1

x
Bj,k

k

)

+

(7)

+

p
∑

l=1

xi

(

λli +
m∑

j=1

Ali,j

n∏

k=1

x
Bj,k

k

)

ul

where
i = 1, . . . , n, A0, Al ∈ R

n×m, B ∈ R
m×n,

λ0, λl ∈ R
n, l = 1, . . . , p.

The corresponding input-affine Lotka-Volterra model is in the form

żj = zj

(

N0j
+

m∑

k=1

M0j,k
zk

)

+

p
∑

l=1

zj

(

Nlj +
m∑

k=1

Mlj,k
zk

)

ul (8)

where

j = 1, . . . ,m, M0,Ml ∈ R
m×m, N0, Nl ∈ R

m, l = 1, . . . , p,

and the parameters can be obtained from the input-affine QP system’s ones in the
following way

M0 = B · A0

N0 = B · L0

Ml = B · Al

Nl = B · λl
l = 1, . . . , p.

(9)
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2.2 Embedding process systems into QP and LV

forms

A wide class of nonlinear autonomous systems with smooth nonlinearities can be
embedded into QP-form [26] if they satisfy two requirements.

1. The set of nonlinear ODEs should be in the form:

ẋs =
∑

is1,...,isn,js

ais1...isnjs
xis1

1 . . . xisn

n f(x)js , (10)

xs(t0) = x0
s, s = 1, . . . , n

where f(x) is some scalar valued function, which is not reducible to quasi-

monomial form containing terms in the form of
∏n

k=1 x
Γj,k

k , j = 1, . . . ,m with
Γ being a real matrix.

2. Furthermore, we require that the partial derivatives of the model (10) fulfill:

∂f

∂xs

=
∑

es1,..,esn,es

bes1..esnes
xes1

1 . . . xesn

n f(x)es

The embedding is performed by introducing a new auxiliary variable

η = f q

n∏

s=1

xps

s , q 6= 0. (11)

Then, instead of the non-quasi-polynomial nonlinearity f we can write the original
set of equations (10) into QP-form:

ẋs =

(

xs

∑

is1,...,isn,js

(

ais1...isnjs
ηjs/q

n∏

k=1

x
isk−δsk−jspk/q
k

))

, s = 1, . . . , n (12)

where δsk = 1 if s = k and 0 otherwise. In addition, a new quasi-polynomial ODE
appears for the new variable η:

η̇ = η






n∑

s=1




psx

−1
s ẋs +

∑

isα,js
esα,es

aisα,js
besα,es

qη(es+js−1)/q×

×
n∏

k=1

x
isk+esk+(1−es−js)pk/q
k

))

, α = 1, . . . , n. (13)

It is important to observe that the embedding is not unique, because we can choose
the parameters ps and q in (11) in many different ways: the simplest is to choose
(ps = 0, s = 1, ..., n; q = 1).

If we set the initial values of the newly introduced variables according to (11)
then the dynamics of the embedded system is equivalent to the original non-QP
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system described in (10). Since the embedded QP system includes the original
differential variables xi, i = 1, . . . , n, it is clear that the stability of the embedded
system (12)-(13) implies the stability of the original system (10).

It is important to note that QP models originate from embedding have some
unusual dynamic properties because their trajectories range only a lower dimensional
manifold of the QP state space. Thus they can be regarded as ”hidden” differential-
algebraic (DAE) system models with rank deficient A parameter matrices [51].

2.2.1 QP models of process systems

The nonlinearities of a lumped parameter process system model are of two types from
the viewpoint of their QP-form representation. The nonlinearities originating from
the sources (e.g. reaction or transfer rates) appear in the f function of the input-
affine state-space model (133) and they are not necessarily in QP-form. Therefore,
the above described embedding of such models into QP-form is of great practical
importance.

The specialities of the input function gi

The specialities of the input function gi of the input-affine state-space model (1)
originate from the fact that the inputs of process systems are most often realized
through either inlet mass or component mass flow-rates, or alternatively, intensive
variables at the inlet, like temperatures or concentrations. This means that they
act through the inlet convection term [22] of the conservation balances that are
transformed into state equations. As convection is bilinear in a mass flow-rate and
an intensive variable (such as concentration, temperature or pressure), the nonlin-
ear input function gi(x) is most often a simple homogeneous linear function of the
corresponding state variable xi:

1. gi(x) = const · xi when the mass flow-rates are the input variables, or

2. gi(x) = const∗ when the intensive variables at the inlet are the inputs.

Case (1) implies that the parameters Al = 0 in (7) and Ml = 0 in (8).
The above special form is, of course, not valid, when a QP state equation origi-

nates from variable embedding.

2.2.2 A simple fermentation example

A simple fermentation example illustrates the way of embedding non-QP system
models into QP-form and the special properties of process system models in QP-
form. Consider a simple fermentation process with non-monotonous reaction kinetics
that is described by the non-QP input-affine state-space model

ẋ1 = µ(x2)x1 +
(XF − x1)F

V

ẋ2 = −µ(x2)x1

Y
+

(SF − x2)F

V
(14)

µ(x2) = µmax
x2

K2x2
2 + x2 + K1
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where the state variables x1 and x2 are the biomass- and the substrate concentrations
respectively. The inlet substrate and biomass concentrations denoted by SF and XF ,
are the manipulated inputs. The variables and parameters of the model together
with their units and parameter values are given in Table 5. The parameter values
are taken from [41].

By introducing a new differential variable η = 1
K2x2

2
+x2+K1

one arrives at a third

differential equation

η̇ = − 2K2x2 + 1

(K2x2
2 + x2 + K1)2

· ẋ2 (15)

that completes the ones for x1 and x2. Thus the original system (14) can be repre-
sented by three differential equations in input-affine QP-form:

ẋ1 = x1

(

µmaxx2η − F

V

)

+ x1

(

x−1
1

F

V

)

XF

ẋ2 = x2

(

−µmax

Y
x1η − F

V

)

+ x2

(

x−1
2

F

V

)

SF (16)

η̇ = η

(
2µmaxK2

Y
x1x

2
2η

2 +
2K2F

V
x2

2η +
µmax

Y
x1x2η

2 +
F

V
x2η

)

+

+η

(

−2K2F

V
x2η − F

V
η

)

SF

The system has a locally stable equilibrium point in the positive orthant:

[
x∗

1

x∗
2

]

=

[
4.8906
0.2187

]

(17)

with steady-state inputs [
X∗

F

S∗
F

]

=

[
0
10

]

. (18)

Note, that there is also a so-called wash-out equilibrium where biomass concentration
x1 is zero.
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Figure 2: Some trajectories of the system (14) embedded into the QP model (16)

The system can be characterized by the following matrices:

A0 =





µmax 0 0 0 0 0 0 0
0 0 −µmax

Y
0 0 0 0 0

F
V

0 0 0 2µmaxK2

Y
2K2F

V
µmax

Y
0





A1 =





0 F
V

0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



 A2 =





0 0 0 0 0 0 0 0
0 0 0 F

V
0 0 0 0

−2K2F
V

0 0 0 0 0 0 −F
V





B =















0 1 1
−1 0 0

1 0 1
0 −1 0
1 2 2
0 2 1
1 1 2
0 0 1















λ0 =





−F
V

−F
V

0



 λ1 = λ2 =





0
0
0



 .

(19)
The eight quasi-monomials of the QP system model given by the matrices (19) are

x2η, x−1
1 , x1η, x−1

2 , x1x
2
2η

2, x2
2η, x1x2η

2, η.

The lower dimensional manifold and some trajectories of the system can be seen on
Figure 2. (The inputs XF and SF are held constant.)
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2.3 Earlier work on the representation and sta-

bility analysis of QP systems

The fundamental works on LV systems was proposed by Lotka [42] and Volterra [65]
which put the LV form into a population biology framework.

From the 90′s there are several works about the representation of general nonlin-
ear systems having smooth nonlinearities by QP and LV models, e.g. [26], [27] [28].
[27] established the algebraic structure of the class of QP systems. They split into
equivalence classes and each class of equivalence is represented by a Lotka-Volterra
system.

The other branch of papers are engaged in the stability properties of Lotka-
Volterra and quasi-polynomial systems. Local stability analysis of them can be found
in [12], where the locally linearized system matrices can be determined directly from
the QP or LV system’s parameter matrices.
Several works investigate the global stability of Lotka-Volterra predator-prey models,
especially with periodic solutions [59], [43]. However, there are also works on the
global stability of quasi-polynomial systems [25], [14]. The main weakness of them
is that only small (3-4) dimensional LV systems can be handled with these methods.
An interesting numerical method for their stability analysis is given in [17].

An algorithmic method for finding invariants of quasi-polynomial systems is pro-
posed in [51].

On the other hand, the utilization of Lotka-Volterra models for feedback control
appears only in few papers [18], or [19], where the positive stabilizing control is
proposed only for a subset of LV systems.
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Chapter 3

Stability analysis of
quasi-polynomial systems

Global asymptotic stability is a very strong property of all system classes discussed
in section 1.2 and Appendix A.1.1. The global stability analysis of general nonlinear
systems (131) is far from being trivial, and results can be obtained only for special
system classes.

Based on the fundamental concepts of QP and LV systems presented in chapter 2,
this chapter draws up own results for the global stability analysis of quasi-polynomial
systems. Section 3.1 presents a method for global stability analysis, afterwards,
section 3.2 generalizes its applicability.

3.1 Global stability analysis using linear matrix

inequalities [O4]

This section reformulates the time-decreasing condition of a class of Lyapunov func-
tions for Lotka-Volterra systems so that widespread numerical solvers can be used
for their global stability analysis.

3.1.1 Global stability analysis

Henceforth it is assumed that x∗ is a positive equilibrium point, i.e. x∗ ∈ int(Rn
+)

in the QP case and similarly z∗ ∈ int(Rm
+ ) is a positive equilibrium point in the LV

case. For LV systems there is a well known candidate Lyapunov function family
[25],[14], which is in the form:

V (z) =
m∑

i=1

ci

(

zi − z∗i − z∗i ln
zi

z∗i

)

, (20)

ci > 0, i = 1 . . . m,

where z∗ = (z∗1 , . . . , z
∗
m)T is the equilibrium point corresponding to the equilibrium

x∗ of the original QP system (4). The time derivative of the of the Lyapunov function
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(20) is:

V̇ (z) =
1

2
(z − z∗)(CM + MT C)(z − z∗) (21)

where C = diag(c1, . . . , cm) and M is the invariant characterizing the LV form
(5). Therefore the non-increasing nature of the Lyapunov function is equivalent
to a feasibility problem over the following set of linear matrix inequality (LMI)
constraints:

CM + MT C ≤ 0
C > 0

(22)

where the unknown matrix is C, which is diagonal and contains the coefficients of
(20). (See Appendix A.4.1 for the properties and solution methods of LMIs.)

Note the similarity of the stability conditions with continuous time LTI systems
(127): for a system with state matrix A to be asymptotically stable, there must
be positive definite matrices P and Q such that AT P + PA = −Q (the Lyapunov-
equation). If P is a diagonal matrix, A is said to be diagonally stable [33].

It is important to mention that the strict positivity constraint on ci can be
somewhat relaxed in the following way [14]: if the equations of the model (4) are
ordered in such a way that the first n rows of B are linearly independent, then ci > 0
for i = 1, . . . , n and cj = 0 for j = n + 1, . . . ,m still guarantee global stability.

It is examined and proved in [14] and [25] that the global stability of (5) with
Lyapunov function (20) implies the boundedness of solutions and global stability
of the original QP system (4). It is stressed that global stability is restricted to the
positive orthant int(Rn

+) only for QP and LV models, because it is their original
domain (see the definition in (4)).

It is also important that the global stability of the equilibrium points of (4) with
Lyapunov function (20) does not depend on the value of the vector L as long as
the equilibrium points are in the positive orthant [14]. This fact will allow us to
place the equilibrium point of the closed loop system during the stabilizing controller
design (see section 4).

The possibilities to find a Lyapunov function that proves the global asymptotic
stability of a QP system can be increased by using time-reparametrization [O4], that
is described later in section 3.2.

3.1.2 Zero dynamics analysis

The results in this part indicate that a fortunate choice of a QP-type feedback can
simplify the dynamics of a closed-loop system in such a way that the number of
quasi-monomials may drastically decrease.

Let us consider a SISO input-affine QP-model in the form of (7) with p = 1
and with the simplest output y = xi − w∗ for some i and w∗ > 0, i.e. we want
to keep the system’s output being equal to a state variable at a positive constant
value. Moreover, let us assume that the relative degree of the system equals one and
gi1(x) = gi(x) =

∏n
j=1 x

γji

j , i.e. the input function is of quasi-monomial type (see
Appendix A.1.2). Then the output zeroing input is given in the form

u(t) = −Lfh(x)

Lgh(x)
= − fi(x)

∏n
j=1 x

γji

j

. (23)
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It is seen that the output zeroing input above is in QP-form if fi(x) is in QP-form.
In order to obtain the zero dynamics (see Appendix A.1.2, or [29]), one has to

substitute the input (23) to the state equation (7) to obtain an autonomous system
model. It is easy to compute that the resulting zero dynamics system model will
remain in QP-form with an output zeroing input in QP-form [O5].
Therefore the stability analysis of the zero dynamics can be investigated using the
methods described earlier in section 3.1.1.

The above result can be easily generalized to the case of output functions in
quasi-monomial form.

3.1.3 Zero dynamics of the simple fermentation process

In what follows a slightly different version of (14) is examined where the input is the
flowrate F . The values of SF , and XF are the constant steady state values of them
in (18). The zero dynamics analysis for the fermentation example can be performed
e.g. by using the output

y = x2 − x∗
2,

i.e. the centered substrate concentration. The output zeroing input can be easily
computed:

F =
µmaxx

∗
2V

Y (SF − x∗
2)

x1η (24)

If the above equations are substituted into the QP-form, one gets the following zero
dynamics

ẋ1 = x1

(
µmaxx

∗
2

K2x∗
2
2 + x∗

2 + K1

− x∗
2µmax

Y (SF − x∗
2)(K2x∗

2
2 + x∗

2 + K1)
x1

)

(25)

with QP matrices A′, B′ and λ′ being the following ones:

A′ =
[

− x∗
2
µmax

Y (SF−x∗
2
)(K2x∗

2

2+x∗
2
+K1)

]

=
[
−0.1640

]
,

B′ =
[

1
]
, λ′ =

[
µmaxx∗

2

K2x∗
2

2+x∗
2
+K1

]

=
[

0.8022
]
,

Hence, the only monomial of the zero dynamics is

X

Note that the number of quasi-monomials has been drastically reduced.
In order to study the local stability of the zero dynamics, we first computed the

eigenvalue (i.e. the value) of the Jacobian of the zero dynamics at the equilibrium
point x∗

1 that is
−0.8022

Thereafter the feasibility of the LMI (22) was investigated using the LMI Toolbox
in Matlab [60] for global stability analysis. The result of the LMI is the following
Lyapunov function parameter matrix:

C =
[

2.7642
]
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Therefore the global stability of the zero dynamics is proved through the QP de-
scription. This result is in good agreement with [58] where the stability of the zero
dynamics was proved through nonlinear coordinates-transformations.

3.2 Time-reparametrization [O4]

It was shown in [O4], that the significance of time-reparametrization is that it largely
extends the possibilities to prove the global stability of a QP system (see e.g. [14]).
As we will see on the examples in section 3.2.4, there are cases when the invari-
ant matrix M of the system itself is not diagonally stabilizable (see section 3.1.1),
but with an appropriate time-reparametrization, it is possible to find a Lyapunov
function of the form (21) for the transformed (reparametrized) model.

3.2.1 The time-reparametrization transformation

Let ω = [ω1 . . . ωn]T ∈ R
n. It is shown e.g. in [14] that the following reparametriza-

tion of time

dt =
n∏

k=1

xωk

k dt′ (26)

transforms the original QP system into the following (also QP) form

dxi

dt′
= xi

m+1∑

j=1

Ãi,j

n∏

k=1

x
B̃j,k

k , i = 1, . . . , n (27)

where Ã ∈ R
n×(m+1), B̃ ∈ R

(m+1)×n and

Ãi,j = Ai,j, i = 1, . . . , n; j = 1, . . . ,m (28)

Ãi,m+1 = λi, i = 1, . . . , n (29)

and

B̃i,j = Bi,j + ωj, i = 1, . . . ,m; j = 1, . . . , n (30)

B̃m+1,j = ωj, j = 1, . . . , n. (31)

It can be seen that the number of monomials is increased by one and vector λ̃ is
zero in the transformed system.

Special case

A special case of the time-reparametrization or new time transformation occurs
when the following relation holds:

ωT = −bj, 1 ≤ j ≤ m, (32)

where bj is an arbitrary row of the B matrix of the original system (4). From (30)
and (31) we can see that in this case the j-th row of B̃ is a zero vector. This means
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that the number of monomials in the transformed system (27) remains the same
as in the original QP system (4) and a nonzero λ̃ vector that is equal to the j-th
column of A appears in the transformed system (for an example, see [14]).

In this case, the ω vector can take only m possible different values (see (32)),
therefore the stability analysis of the transformed system reduces to the feasibility
check of m different LMIs of the form (22). However, our approach treats the ω
vector as part of the unknowns to be determined, therefore from now on we will
only consider the generic case discussed in section 3.2.

3.2.2 Properties of the time-reparametrization transforma-
tion

The most important properties of the time-reparametrization transformation that
are used for analyzing local and global stability are as follows.

Monomials

The set of monomials p1, . . . , pm+1 for the reparametrized system can be written up
in terms of the original monomials:

pj =
n∏

k=1

xωk

k ·
n∏

k=1

x
Bj,k

k =
n∏

k=1

x
Bj,k+ωk

k , j = 1, . . . ,m

and

pm+1 =
n∏

k=1

xωk

k

or using a shorter notation:

pj = r · zj, j = 1, . . . ,m

pm+1 = r

where zj is given in (6) and

r =
n∏

k=1

xωk

k

Equilibrium points

Since the equations of the reparametrized system (27) can be written as

dxi

dt′
= xi

(

λi +
m∑

j=1

Ai,j

n∏

k=1

x
Bj,k

k

)
n∏

k=1

xωk

k , i = 1, . . . , n (33)

and we assume that xi > 0, i = 1, . . . , n, it is clear that the equilibrium point x∗ of
the original QP system (4) is also an equilibrium point of the reparametrized system
(33).
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Local stability

Let us denote the Jacobian matrix of the original QP system (4) at the equilibrium
point by J(x∗). Then the Jacobian matrix of the time reparametrized QP system
at the equilibrium point can be computed by using the formula described in [12]:

J̃(x∗) = X∗ · Ã · Z̃∗ · B̃ · (X∗)−1 = r∗ · J(x∗) =
n∏

k=1

x∗ ωk

k · J(x∗), (34)

where
Z̃∗ = diag(p∗1, . . . , p

∗
m, p∗m+1) , X∗ = diag(x∗

1, . . . , x
∗
n)

are the quasi-monomials of the time-reparametrized system and the system variables
in the equilibrium point. From (34) one can see that (as we naturally expect) local
stability is not affected by the time-reparametrization, because this transformation
just multiplies the eigenvalues of the Jacobian by a positive constant r∗.

Global stability

Rewriting (26) gives

dt

dt′
=

n∏

k=1

(xk(t
′))ωk (35)

from which we can see that t is a strictly monotonously increasing continuous and
invertible function of t′. This means that global stability of the QP system in the
reparametrized time t′ is equivalent to global stability in the original time scale t.

3.2.3 The time-reparametrization problem as a bilinear ma-
trix inequality

We denote an n × m matrix containing zero elements by 0n×m. Let us define two
auxiliary matrices by extending A with a zero column and B with a zero row, i.e.

Ā =
[

A 0n×1
]
∈ R

n×(m+1), (36)

and

B̄ =





B

01×n



 ∈ R
(m+1)×n. (37)

Then Ã and B̃ can be written as

Ã = [A|L] = Ā + [0n×m|L], (38)

and

B̃ =










b1 + ωT

b2 + ωT

...
bm + ωT

ωT










= B̄ + S · Ω (39)
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where
Ω = diag(ω) ∈ R

n×n (40)

and

S =








1 1 . . . 1
1 1 . . . 1
...
1 1 . . . 1







∈ R

(m+1)×n (41)

It can be seen from (38) and (39) that the invariant matrix of the reparametrized
system is

M̃ = B̃ · Ã = (B̄ + S · Ω) · Ã (42)

Therefore the matrix inequality for examining the global stability of the reparametrized
system is the following

− C < 0 (43)

M̃T · C + C · M̃ ≤ 0 (44)

i.e.

− C < 0 (45)

ÃT (B̄T + ΩST )C + C(B̄ + SΩ)Ã ≤ 0 (46)

which clearly has the same form as (22), but with the following set of unknowns:

x =














x1

x2
...

xm+1

xm+2
...

xm+n+1














=














c1

c2
...

cm+1

ω1
...

ωn














, (47)

that makes it a BMI (see Appendix A.4.1 for the properties of BMIs). Now we are
ready to construct the parameter matrices in the BMI (158) starting with

G1
0 = G2

0 = 0(m+1)×(m+1), (48)

G1
ki,j =

{
−1, i = j = k
0, otherwise

(49)

i, j, k = 1, . . . ,m + 1,

G1
k = 0(m+1)×(m+1), k = m + 2, . . . ,m + n + 1 (50)

and
K1

kl = 0(m+1)×(m+1), k, l = 1, . . . ,m + n + 1. (51)
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Furthermore, let us introduce the following notations

Pk ∈ R
(m+1)×(m+1),

Pki,j =

{
B̄ · Ãi,j, i = k
0, i 6= k

, (52)

i, j, k = 1, . . . ,m + 1

and

Qkl ∈ R
(m+1)×(m+1),

Qkli,j =

{
Ãl−m−1,j, i = k
0, i 6= k

, (53)

i, j, k = 1, . . . ,m + 1, l = m + 2, . . . ,m + n + 1.

Then

G2
k =

{
Pk + P T

k , k = 1, . . . ,m + 1
0(m+1)×(m+1), k = m + 2, . . . ,m + n + 1,

, (54)

and

Kkl =

{
Qkl + QT

kl, k = 1, . . . ,m + 1, l = m + 2, . . . ,m + n + 1
0(m+1)×(m+1), otherwise

(55)

k, l = 1, . . . ,m + n + 1.

We note that in certain cases the feasibility of a BMI can be traced back to the
feasibility of equivalent LMIs (see [6] or [56]), but in our case it is not possible
because of the structural (diagonality) constraint on both of the unknown matrices
Ω and C in (46).

3.2.4 Examples

In order to illustrate the above proposed method of finding time-reparametrization
transformations for global stability analysis, two simple examples are presented.

Example with a full rank M matrix

Consider a QP system with the following matrices

A =

[
2
3

−8
3

2
3

−7
3

]

≈
[

0.6667 −2.6667
0.6667 −2.3333

]

(56)

B =

[
2
3

−1
3

−8
3

16
3

]

≈
[

0.6667 −0.3333
−2.6667 5.3333

]

(57)

L =

[
2
5
3

]

≈
[

2
1.6667

]

(58)

Its equilibrium point of interest is:

x∗ = [1 1]T (59)
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The Jacobian matrix of the locally linearized system in x∗ has the following eigen-
values: -0.1187, -4.9924. This shows that the investigated equilibrium point is at
least locally asymptotically stable.

Using an appropriate LMI solver (e.g. Matlab’s LMI Control Toolbox) it can be
checked that the LMI (22) cannot be solved for M = B · A. However, using the
algorithm [36] for solving the corresponding BMI we find that a feasible solution of
(46) is e.g.

C =





1 0 0
0 1 0
0 0 1



 , ω =
[

2
3

−5
3

]T
(60)

The eigenvalues of M̃T · C + C · M̃ are

λ1 = 0, λ2 ≈ −0.2374, λ3 ≈ −9.9848, (61)

which shows that the examined system is globally stable.
An example in which time-reparametrization transformation is applied for a sys-

tem for which the matrix M is rank deficient is given in Appendix A.3.1.

3.3 Summary

The main contribution of the chapter is first of all that the non-increasing nature of
a QP or LV system’s Lyapunov function is equivalent to a linear matrix inequality,
thus the stability analysis of these systems (and general nonlinear process systems
embedded into QP form) is equivalent to the feasibility of a linear matrix inequality.
Even if a system is globally asymptotically stable, one not always finds a Lyapunov
function proving the global stability.

It was also shown in section 3.2, that the time-reparametrization transformation
introduces a re-scaling in the QP system’s quasi-monomials, such that the global
stability of transformed QP system is equivalent to that of the original one. This
way, the global stability analysis can be extended to a wider class of QP systems
by embedding the parameters of the time-reparametrization transformation into the
global stability analysis, this way one has to solve a bilinear matrix inequality.
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Chapter 4

Stabilizing control of
quasi-polynomial systems

The most widely used method for the control of nonlinear process systems is the use
of model predictive controllers [15], which offers an optimization based solution of
the control problem. Meanwhile, techniques of modern nonlinear control plays only
a limited role in the field of process engineering, although there are a few results on
this topic (e.g. [40]).

Present chapter proposes results on globally stabilizing feedback design for QP
systems utilizing the results of chapter 3.

Embedding the process system into QP form (see section 2.2), and applying
state feedback that preserves the QP-form of the closed loop system, its global
stability can be conveniently investigated by using LMIs if the feedback parameters
are known and fixed. If the feedback parameters are not fixed, then a feedback
design problem is defined that globally stabilizes the closed loop system, that is the
subject of section 4.1.

Unfortunately, the solution of the feedback design problem does not automati-
cally provide tools for the design of the steady-state point of the system. Therefore,
the basic conditions of steady-state point placing are discussed in section 4.3. Fi-
nally, some additional structural feedback design results are presented in section
4.4.

4.1 The controller design problem [O5]

The globally stabilizing QP state feedback design problem for QP systems can be
formulated as follows. Consider arbitrary quasi-polynomial inputs in the form:

ul =
r∑

i=1

kilq̂i, l = 1 . . . , p (62)

where q̂i = q̂i(x1, . . . , xn), i = 1, ..., r are arbitrary quasi-monomial functions of the
state variables of (7) and kil is the constant gain of the quasi-monomial function q̂i

in the l-th input ul. The closed loop (autonomous) system will also be a QP system
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with matrices

Â = A0 +

p
∑

l=1

r∑

i=1

kilAil, B̂, (63)

L̂ = L0 +

p
∑

l=1

r∑

i=1

kilLil. (64)

Note that the number of quasi-monomials in the closed-loop system (i.e. the dimen-
sion of the matrices) together with the matrix B̂ may significantly change depending
on the choice of the feedback structure, i.e. on the quasi-monomial functions q̂i.

Furthermore, the closed loop LV coefficient matrix M̂ can also be expressed in
the form:

M̂ = B̂ · Â = M0 +

p
∑

l=1

r∑

i=1

kilMil.

Then the global stability analysis of the closed loop system with unknown feedback
gains kil leads to the following bilinear matrix inequality (see (158) in Appendix
A.4.1)

M̂T C + CM̂ = MT
0 C + CM0 +

p
∑

l=1

r∑

i=1

kil

(
MT

il C + CMil

)
≤ 0. (65)

The variables of the BMI are the p× r kil feedback gain parameters and the cj, j =
1, ..,m parameters of the Lyapunov function. If the BMI above is feasible then there
exists a globally stabilizing feedback with the selected structure.

4.2 Numerical solution of the controller design

problem [O11]

This section deals with the numerical aspects of the globally stabilizing controller
design problem.

4.2.1 Numerical solution based on bilinear matrix inequal-
ities

There are just few software tools available for solving general bilinear matrix in-
equalities that is a computationally hard problem. In some rare fortunate cases
with a suitable change of variables quadratic matrix inequalities can be rewritten as
linear matrix inequalities (see e.g. [6]). Unfortunately, the structure of the matrix
variable of (65) does not fall into this fortunate problem class, so the previously
mentioned idea cannot be used.
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Rewriting the above matrix inequality (65) in the form (158) one gets the fol-
lowing expression which can be directly solved by [37] as a BMI feasibility problem:

m∑

j=1

cjM̄0,j +
m∑

j=1

p
∑

l=1

r∑

i=1

cjkilM̄il,j ≤ 0

−c1 < 0 (66)
...

−cm < 0.

The two disjoint sets of BMI variables are the cj parameters of the Lyapunov func-
tion and the kil feedback parameters. The parameters of the problem M̄0,j (M̄il,j,
respectively) are the symmetric matrices obtained from M0 (Mil, respectively) by
adding the m×m matrix that contains only the j-th column of M0 (Mil, respectively)
to its transpose:

M =






m11 · · · m1j · · · m1m
...

. . .
...

. . .
...

mm1 · · · mmj · · · mmm






↓

M̄j =










0 · · · m1j · · · 0
...

...
...

m1j · · · 2mjj · · · mmj
...

...
...

0 · · · mmj · · · 0










.

Note that for low dimensions (i.e. for m < 3) there are practically feasible meth-
ods for circumventing the BMI feasibility problem [33] but these cannot be extended
to the practically important higher dimensional case.

4.2.2 An iterative LMI approach to controller design prob-
lem

Because of the NP-hard nature of the general BMI solution problem, it is worthwhile
to search for an approximate but numerically efficient alternative way of solution.
As shown below, the special structure of the QP stabilizing feedback design BMI fea-
sibility problem allows us to apply a computationally feasible method for its solution
that solves an LMI in each of its iterative approximation step. The already existing
iterative LMI (ILMI) algorithm of [8] used for static output feedback stabilization
(see e.g. in [8]) will be used for this purpose.

In order to be able to use the ILMI algorithm, it is necessary to write up the
QP stabilizing feedback design problem as a static output feedback stabilization
problem for LTI systems. In what follows the globally stabilizing feedback design
BMI (65) is used in the form

(M0 + ΘK)T C + C(M0 + ΘK) < 0. (67)
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where

Θ =





1st
︷ ︸︸ ︷

M1, . . . ,Mp, . . . ,

rth
︷ ︸︸ ︷

M1, . . . ,Mp



 , K =















k11 · Im×m
...

k1p · Im×m
...

kr1 · Im×m
...

krp · Im×m















.

The above problem is equivalent to a LTI output feedback stabilization problem

(A + BFC)T P + P (A + BFC) < 0

with M0 corresponding to the state matrix A, Θ playing the role of the input matrix
B, and K serving as FC and P is the unknown matrix variable of the problem. It
is apparent that the matrix parameters and variables have a special structure for
quasi-polynomial systems.

The ILMI algorithm does not aim at finding the complete feasible set of the BMI
(67) but computes an optimal solution point with minimal trace of C if the BMI is
feasible. The ILMI algorithm solves a linear objective function minimizing LMI and
a generalized eigenvalue problem in each step. The scheme of the algorithm is the
following:

Step 1: Let Q > 0, the parameter of the algorithm. Solve the Riccati equation

MT
0 C + CM0 − CΘΘT C + Q = 0, (68)

for C (not necessarily diagonal).

i = 1, X1 = C.

Step 2: Solve the following optimization problem for Ci, K and αi:
Minimize αi subject to the LMI constraint

[
MT

0 Ci + CiM0 − XiΘΘT Ci − CiΘΘT Xi + XiΘΘT Xi − αiCi (ΘT Ci + K)T

ΘT Ci + K −I

]

< 0,

Ci = diag(ci1, . . . , cim) > 0
(69)

α∗
i denotes the minimized αi.

Step 3: If α∗
i ≤ 0, K is a stabilizing feedback gain. STOP.

Step 4: Solve the following optimization problem for Ci and K:
Minimize trace(Ci) subject to the LMI constraints (69) using αi = α∗

i . Denote
C∗

i as the Ci that minimizes trace(Ci).
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Step 5: If ‖Xi − C∗
i ‖ < δ, GOTO Step 6. Else set i = i + 1 and Xi = C∗

i and GOTO
Step 2.

Step 6: The system may not be stabilizable by a quasi-polynomial feedback. STOP.

It is important to note that for QP systems with rank deficient M0 = B ·A some ad-
ditional techniques are needed because the algorithm fails for singular M0 matrices.
One possible way is using singular perturbation on M0:

M̃0 = M0 − ε · Im×m, ε > 0.

If this way (M̃0, Θ) become stabilizable then the algorithm can be applied.
According to [8] the algorithm is convergent although sometimes we may not

achieve a solution because α not always converges to its minimum. The proper
selection of initial Q affects the convergence of the algorithm, a suitable selection
of Q that guarantees the immediate convergence can be found in [8]. Based on
the above, the algorithm is used as an off-the-shelf tool, that’s why no numerical
analysis is presented here.

It is important to emphasize here, that the computationally feasible ILMI algo-
rithm can be used to test the feasibility of the associated BMI, and then the final
design can be performed by a constrained optimization method using a suitable
controller performance criterion in the feasible case.

4.3 Equilibrium points [O11]

After solving the globally stabilizing feedback design BMI the resulting Lotka-
Volterra system has a globally asymptotically stable equilibrium point in the positive
orthant. This steady-state equilibrium point x∗ can be determined from the steady-
state version of the closed loop quasi-polynomial system (4)

0 = xi

(

λ̂i +
m∑

j=1

Âij

n∏

k=1

x
B̂jk

k

)

, i = 1, . . . , n. (70)

By excluding the non strictly positive equilibrium states one only has to deal with
the equation:

0 = λ̂i +
m∑

j=1

Âij

n∏

k=1

x
B̂jk

k , i = 1, . . . , n (71)

where the parameters λ̂i and Âij depend linearly on the feedback parameters ac-
cording to the equations (63) and (64).

However, with the BMI (65) it is not possible to prescribe the equilibria of the
closed loop system but only to globally stabilize it. So it is necessary to introduce
extra parameters to the feedback in order to be able to place the positive steady
state point anywhere in the positive orthant as needed. The feedback structure has
to be constructed in a way that the parameters that are used in the steady state
point placing problem appear in the vector λ̂ of the closed loop quasi-polynomial
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system. This way the parameters of the equilibrium placing are separated from the
stabilizing feedback design BMI’s parameters. The feedback has the form

u = K(k, x) + D(δ, x) (72)

where K(k, y) is the feedback structure with the parameters for the BMI, and D(δ, y)
has the form so that the components of the parameter vector δ appear in the vector
λ of the closed loop QP system. It is important to note that the QP input (62) is
linear in both of the parameters k and δ.

One can further simplify the QP input structure (62) for process systems if the
input variables are selected to be the intensive variables at the inlet, i.e. gi(x) =
const∗ (see section 2.2.1). Then we can use a linear term Di(δi, xi) = δixi in the
feedback (72) to take care of the placing of the steady-state point, and the other
term for stabilizing the closed loop system.

4.3.1 Fully actuated case

In this case the QP system has at least one designated input for each of the n state
equations. The steady state point of these systems can be put anywhere in the
positive orthant.

0 = λi(δ) +
m∑

j=1

Aij

n∏

k=1

x
∗Bjk

k , i = 1, . . . , n (73)

where λi(δ) is a linear function of the δ parameters of the problem and x∗ =
(x∗

1, . . . , x
∗
n)T is the desired equilibrium. That is, δ can be determined from a linear

system of equations.

4.3.2 Partially actuated case

If the system has k < n different inputs, then there are no general results for QP
models. However, in the Lotka-Volterra case there is some possibility of shifting
some components of the equilibrium point. If the LV coefficient matrix M can be
transformed into an upper block triangular matrix by row and column changes then
it means that the first k coordinates of the equilibrium point can be prescribed at
will independently of the remaining n − k.

Note that if the system does not belong to the above two classes then it is not
possible to redesign its equilibrium point with the above technique.

4.3.3 Rank deficient (embedded) systems

In case of systems that are not originally in quasi-polynomial form (see section 2.2
for embedding into QP-form) all the above hold with some specialities. It is known
that for such QP systems that their trajectories range only a lower dimensional
manifold of the QP state space and their parameter matrix A is rank deficient.
With this understanding one has to design the equilibrium point of the system (if it
is possible to design at all, see section 4.3.2) into this lower dimensional manifold.
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4.4 Feedback structure selection [O11]

Of course, the feedback structure selection affects heavily the solution of the BMI.
The results of zero dynamics analysis of QP-systems [O5] indicate that a fortunate
choice of a QP-type feedback can simplify the dynamics of a closed-loop system in
such a way that the number of quasi-monomials may drastically decrease. This way
the dimension of the LV system, and the size of the BMI to be solved can also be
drastically reduced.

In certain special cases it is possible to change the entire system dynamics to a
desired one while this possibility depends on the number of available inputs.

4.4.1 Fully actuated case

Suppose, that we have an input affine QP system in the form:

ẋi = fi(x) + gi(x)ui = xi

(

λ0i
+

m∑

j=1

A0ij

n∏

k=1

x
Bjk

k

)

+

(74)

+xi

(

λii +
m∑

j=1

Aiij

n∏

k=1

x
Bjk

k

)

ui, i = 1 . . . , n,

i.e. every equation has a designated input. Suppose in addition that the desired
closed-loop system dynamics is given in the form:

ẋi = hi(x), i = 1, . . . , n (75)

where hi are quasi-polynomial functions.
It is obvious that (74) can be transformed into (75) with the following feedback

structure:

ui = −fi(x)

gi(x)
+

hi(x)

gi(x)
, gi(x) 6= 0. (76)

It can be seen that in general case the expression fed back to the input is not a QP,
but a rational function.

Fortunately, the input function gi in the denominator of the above formulae (76)
is a simple linear function gi(x) = const · xi or gi(x) = const∗ for process systems
(see section 2.2.1), therefore the feedback remains a QP function for process systems
implying the closed-loop system dynamics to remain in the QP system class.
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4.4.2 Partially actuated case

The other case is when there are not as many different inputs as equations i.e. the
QP system can be arranged into the form

ẋp = fi(x) + gp(x)up = xp

(

λ0p
+

m∑

j=1

A0pj

n∏

k=1

x
Bjk

k

)

+

(77)

+xp

(

λpp
+

m∑

j=1

Appj

n∏

k=1

x
Bjk

k

)

up, p = 1 . . . , k

ẋq = fq(x) = xq

(

λ0q
+

m∑

j=1

A0qj

n∏

k=1

x
Bjk

k

)

, q = k + 1 . . . , n.

This way only the first k equations can be modified freely:

up = −fp(x)

gp(x)
+

hp(x)

gp(x)
, gp(x) 6= 0, p = 1, . . . , k.

The closed loop system with the above structure is

ẋp = hp(x), p = 1, . . . , k
ẋq = fq(x), q = k + 1, . . . , n.

(78)

4.4.3 Degenerated case

When there is an input that is assigned to more than one equations the above change
of dynamics cannot be used in general. Choosing one equation to change with the
input one can destroy the QP form of the other equations having the same input.
Of course in special cases it is possible to have useful results, for example in the case
of zero dynamics (see section 3.1.3 , or [O5]).

4.5 Examples

In the following, some simple process system examples are proposed for the BMI
based stabilizing controller design problem discussed so far. The first two are sim-
ple continuously stirred tank reactor (CSTR) examples with second order chemical
reactions where the system model is naturally in a QP-form.

A final example is described in Appendix A.3.2 that is similar to the fermentation
example described in section 2.2.2 and has an embedded rank deficient QP model
but in this case the reaction kinetics is a little bit simpler.
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4.5.1 Partially actuated process system example in QP-form

The system of this example is a simpler variant of the fermentation process of section
2.2.2 with SF being the manipulable input:

ẋ1 = µmaxx1x2 − F
V

x1

ẋ2 = −µmax

Y
x1x2 + F

V
(SF − x2).

(79)

The parameter values can be seen in Table 7. The quasi-polynomial form of the
model is:

ẋ1 = x1 (S − 2)
ẋ2 = x2

(
−x1 + 2x−1

2 SF − 2
)
.

(80)

For a fixed value of the substrate concentration S∗
F = 1, the system has an asymp-

totically stable wash-out type equilibrium point





x∗
1

x∗
2

S∗
F



 =





0
1
1



 .

The feedback structure was chosen to be

SF = k1x
2
2 + δ1x2.

The closed loop system with the above structure is

ẋ1 = x1 (x2 − 2)
ẋ2 = x2 (−x1 + 2k2x2 + 2(δ1 − 1)) .

(81)

It is apparent, that the above QP model (81) is also the Lotka-Volterra model of
the system. The LV matrices of the system are the following ones:

M =

[
0 1

−1 2k1

]

, N =

[
−2

2(δ1 − 1)

]

.

It is noticeable that matrix M is not upper triangular, i.e. the equilibrium cannot
be manipulated partially based on the results of section 4.3.2. However, with a
fortunate choice of δ1 (e.g. δ1 = 2.5) one can modify the value of the (non wash-
out type) equilibrium of system (81). It is important to note, that in this case the
equilibrium will be positive, but one cannot decide its value.
The other free parameter (k1) can be used for stabilizing this equilibria. So k1 and
the two parameters of the Lyapunov function are given to the ILMI algorithm. It
gives the following results:

k1 = −0.0013, C =

[
1.2822 0

0 1.2822

]

.

Figure 3. shows the feasibility region of the globally stabilizing BMI problem and
the solution given by the ILMI algorithm of section 4.2.2. The obtained feedback
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with parameters k1 and δ1 globally stabilizes the system in the positive orthant.
Indeed, the closed loop system has a unique equilibrium state

[
x̄1

x̄2

]

=

[
2.9948
2.0000

]

in the positive orthant int(R2
+), for which the locally linearized system matrix has

eigenvalues with strictly negative real part, this way at least local stability can be
proved for the equilibrium.

Figure 3: BMI feasibility region for Example 4.5.1

4.5.2 Fully actuated process system example in QP-form

The second process system example is the same fermentation process examined in
section 4.5.1 but this time biomass is also fed to the reactor with manipulable inlet
concentration XF . The parameters of the system are the same as in the previous
case.

ẋ1 = µmaxx1x2 + F
V

(XF − x1)

ẋ2 = −µmax

Y
x1x2 + F

V
(SF − x2)

(82)

The quasi-polynomial form of the model is:

ẋ1 = x1

(
x2 + 2x−1

1 XF − 2
)

ẋ2 = x2

(
−x1 + 2x−1

2 SF − 2
)
.

(83)
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Note that (83) is also the Lotka-Volterra model of the system. The manipulable
inputs are XF and SF . For fixed values of the input concentrations X∗

F = 0 and
S∗

F = 1, the system has no equilibrium in the strictly positive orthant but has one
asymptotically stable wash-out equilibrium on the boundary







x∗
1

x∗
2

X∗
F

S∗
F







=







0
1
0
1







.

The feedback structure is chosen to be

XF = k1x
2
1 + δ1x1

SF = k2x
2
2 + δ2x2.

Parameters k1 and k2 are to stabilize the system, δ1 and δ2 will be used to shift the
equilibrium. The closed loop system is

ẋ1 = x1 (2(δ1 − 1) + x2 + 2k1x1)
ẋ2 = x2 (2(δ2 − 1) − x1 + 2k2x2)) .

The iterative BMI algorithm yielded the following parameters for the feedback and
the Lyapunov function:

k1 = −1.0004, k2 = −1.0004, C =

[
1.0004 0

0 1.0004

]

.

We would like to prescribe a strictly positive equilibrium instead of the original one.
Suppose that the desired equilibrium is at

[
x̃1

x̃2

]

=

[
0.5
0.5

]

.

Expressing the values of δ1 and δ2 from the state equations in which the desired
equilibrium point is substituted in yields

δ1 = 1.2502, δ2 = 1.7502.

Indeed, the closed loop system with the determined parameters k1, k2, δ1, δ2 has an
asymptotically stable equilibria in [x̃1, x̃2]

T .
It is apparent that in this example with a higher degree of freedom it was possible

to shift the steady state point of the system.

4.6 Summary

In this chapter a globally stabilizing state feedback design problem was formulated
based on the global stability analysis results of section 3.1. The problem was for-
mulated and solved as a bilinear matrix inequality using the tools summarized in
Appendix A.4.1. However, an alternative efficient method was also developed by re-
formulating the problem so that an existent iterative LMI algorithm is suitable for
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its’ solution. It is important to note, that the control problem does not use the
object function of the bilinear matrix inequality problem, so it is a possible point to
introduce some performance or robustness criteria in the future.

The stabilizing state feedback may shift the closed loop system’s equilibrium
points compared to the original one, so the conditions and methods of designing an
additional feedback that moves the closed loop equilibrium were also developed and
described.

It is vital to take care of the feedback structure, too, since a fortunate choice can
notable decrease the dimension of the closed loop Lotka-Volterra system (see section
3.1.3) and the size of the BMI (65) to be solved. Hence, simple results regarding the
selection of controller structure were also presented here.
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Part II

Quantum systems
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As it was mentioned in section 1.1, reading quantum information from a quan-
tum computer calls for the solution of a state estimation problem, that’s why the
second part of the thesis presents different state estimation methods for quantum
mechanical systems. Most problems of quantum information and communication
theory as well as quantum cryptography also needs the ability to determine the
result of a computation or the received information. The unusual properties of
quantum systems due to quantum measurement makes them very hard to handle
with conventional methods. However, our aim is to apply the results of system- and
control theory on them.

After a short introduction (chapter 5), the results regarding quantum state es-
timation of finite level quantum systems are presented. In chapter 6 a Bayesian
parameter estimation method (discussed in Appendix A.1.4) is used for estimating
the state of simple quantum mechanical systems, while chapter 7 gives an essentially
different estimation scheme for general quantum systems.
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Chapter 5

Introduction to finite quantum
mechanical systems

This chapter summarizes some basic principles of quantum mechanics based on
[55], [24]. The notions are formulated in such a way that the system- and control
theoretical aspects are emphasized where it is possible.

Of course, it is not possible to give a well established introduction to quantum
mechanics within the page constraints of this work. A good introduction to modern
quantum mechanics can be found in [55], or [50]. Just the most necessary notions
are presented here.

Section 5.1 discusses quantum dynamics together with different representations
of quantum states. Section 5.2 deals with the difficulties occurring when a quantum
system is being measured. Afterwards, the general state estimation problem (see
section 1.2 or Appendix A.1.3) is revisited and relaxed for quantum mechanical
systems in section 5.2.3. A short summary of quantum state estimation related
works is given in section 5.3.

5.1 States of quantum mechanical systems

First of all, the classical Dirac notation is introduced together with the Schrödinger
equation which determines the dynamical change of quantum systems in section
5.1.1. Afterwards, different representations of quantum states are introduced in
section 5.1.2 and section 5.1.4 which will be used in the following two chapters.

5.1.1 Quantum dynamics

For quantum mechanical systems the state vectors are in a Hilbert space H, and
following Dirac, they are called kets, and denoted by |x〉.

The evolution of the state ket in time is defined with the so-called time-evolution
operator U(t, t0) [55]:

|x(t)〉 = U(t, t0)|x(t0)〉
The fundamental differential equation of quantum mechanics, the Schrödinger equa-
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tion describes the change of U(t, t0) in time:

i~
d

dt
U(t, t0) = HU(t, t0), (84)

where H is the Hamiltonian operator of the system.
Note the similarity between (84) and (130). Thus, the system theoretical equiva-

lent of the time-evolution operator is the fundamental matrix (see Appendix A.1.1)
(disregarding i~).

The Schrödinger equation (84) can also be written up for the state ket |x〉:

i~
d

dt
|x(t)〉 = H|x(t)〉 (85)

which reminds system theorists to the truncated state equation (128). Moreover,
the Hamiltonian H acts as the system matrix A of an LTI system (127).

The form of U(t, t0) for time independent Hamiltonian operator H is

U(t, t0) = exp

(

− i

~
(t − t0)H

)

which also agrees with (129) from Appendix A.1.1.

5.1.2 State representation: the density matrix

For describing the states of mixed quantum systems that are prepared by statistically
combining two different (pure) states |x(1)〉 and |x(2)〉 the state kets cannot be used,
so another representation is needed.

The so-called density matrix describes the statistical state of a quantum system
in this case. If the state ket vectors are |x(j)〉, then the density matrix is given by

χ =
∑

j

pj|x(j)〉〈x(j)|, pj ≥ 0,
∑

j

pj = 1, (86)

where 〈x| stands for the so-called bra operator. (Together with the ket they represent
the inner product, i.e. the bra-c-ket : 〈x|x〉.) Density matrices χ are statistical
operators acting on the Hilbert space H, they are positive semidefinite self-adjoint
matrices having unit trace:

χ ∈ C
n×n, χ ≥ 0, χ = χ∗, Trχ = 1 (87)

A density operator describes a pure state if it is a rank one projection, i.e.

χ = χ2.

From the geometrical point of view the set of mixed states is a convex set, since
(86) defines a convex combination of pure states. The pure states are the extremal
points of the set of mixed states.

The dynamical change of the system in the density matrix notation is given by

χ(t) = U(t, t0) χ(t0) U(t, t0)
∗.
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5.1.3 Finite quantum systems

In what follows the dimension of H is assumed to be finite. The density matrix of
an N -level quantum system is an N × N matrix with properties (87). The most
important and the simplest special case is of the two level system, the so-called
quantum bit, or qubit which is the quantum analogue of the classical bit.

For describing the state of a quantum word, i.e. more than one coupled qubits
taking place in a register, it is necessary to join several quantum systems to form a
composite system.

A quantum system S created as the composition of quantum systems S1, and
S2 is described by the tensor product H1 ⊗H2, where H1, and H2 are the Hilbert-
spaces corresponding to S1 and S2, respectively. The tensor product of two matrices
is defined in Appendix A.4.2.

By coupling k quantum systems which are of dimension N a special case of finite
quantum systems is generated having dimension Nk. Specially, k coupled qubits
can be treated as a 2k-level quantum system.

5.1.4 Bloch vector

In the case of a qubit i.e. for the density matrices of size 2 × 2 the so-called Pauli
matrices together with the 2 × 2 unit matrix can be used as a basis:

I =

[
1 0
0 1

]

σ1 =

[
0 1
1 0

]

σ2 =

[
0 −i
i 0

]

σ3 =

[
1 0
0 −1

]

Using that σ1, σ2 and σ3 are traceless, all 2 × 2 density matrices χ can be given in
the following form:

χ =
1

2
(I + x1σ1 + x2σ2 + x3σ3), (88)

where x = (x1, x2, x3)
T ∈ R

3 is called Bloch vector (Figure 4). The unit trace of χ
is ensured by construction since all 3 Pauli matrices are traceless. The positivity
constraint from (87) transforms to a length constraint on x:

||x|| =
√

x2
1 + x2

2 + x2
3 ≤ 1 (89)

The distinction of pure states and mixed states is well defined for the Bloch repre-
sentation of a qubit. The mixed states are in the bloch ball whilst the Bloch sphere
i.e. the surface is populated by pure states, see Figure 4.

The parametrization (88) can be generalized for more qubits, or N -level quantum
systems.

Bloch vector of k qubit systems

If the dimension of the system is 2k, then a natural way of parameterizing the state
uses the k-fold tensor product of the Pauli base

χ =
1

2k

3∑

i1,i2,...,ik=0

xi1,i2,...,ik · σi1 ⊗ σi2 ⊗ . . . ⊗ σik , x0,0,...,0 = 1
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Figure 4: Bloch ball for a quantum bit

i.e it is a multidimensional extension of the Bloch-vector. For 4 level systems the
dimension of the Bloch-matrix is 4 × 4:

x =







1 x01 x02 x03

x10 x11 x12 x13

x20 x21 x22 x23

x30 x31 x32 x33







That is, the state has 4 × 4 − 1 = 15 parameters [35].
The natural structure for the coefficients xi1,...,ik of the basis elements is an N -
dimensional hyper-matrix of size 4 × 4 × . . . × 4, i.e. a Bloch-hyper-matrix :

x = (xi1,...,ik)
3
i1,...,ik=0

As before, the Bloch-parametrization ensures unit trace for χ since all the Pauli-
tensor matrices are traceless except for the unity. The positivity of the density
operator of size 2k × 2k is still a constraint to be respected.

Bloch vector of N-level systems

The most general parametrization of the density matrix that suits for all quantum
systems uses the matrix elements as parameters:

χ =
N∑

k=1

xkkEkk +
∑

i<j

(xij(Eij + Eji) + xji(iEij − iEji)) , (90)

where Eij are the matrix units (full of zeros except for the i, j-th element which is
one). This way, the state of an N -level system can be given with N2 real parameters.
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It can be seen that in contrast with the Bloch-parametrization this parametrization
does not ensure the unit trace for the density, so a reasonable modification is:

χ =
N−1∑

k=1

xkkEkk +

(

1 −
N−1∑

k=1

xkk

)

ENN +
∑

i<j

(xij(Eij + Eji) + xji(iEij − iEji)) .

(91)
This offers the use of a generalization of the Bloch-vector space [35]. The Bloch-
vector of an N -level quantum system is a vector of R

N2−1.

For 3-level systems, the density χ can be written up as

χ =





x11 x12 − ix21 x13 − ix31

x12 + ix21 x22 x23 − ix32

x13 + ix31 x23 + ix32 1 − (x11 + x22)





The state of a qutrit thus can be represented by a vector x ∈ R
8.

Of course, in the N -level case the Bloch vector space is not as simple as it was in
the case of a qubit. The state space is a convex asymmetric real subset of a ball in
R

N2−1. In this case, the boundary of the Bloch vector space includes only a subset
of the sphere (which corresponds to the density matrices with rank 1) together with
a subset of the ball (density matrices having not full rank, i.e. not invertible density
matrices). The mixed states are still inside the boundary of the Bloch vector space.

More information about the structure of the Bloch vector space of N -level sys-
tems based on [35] (which slightly differs from the approach applied here) can be
found in Appendix A.2.

5.1.5 Distances between quantum states

Throughout the work two basic quantities are used for describing the distance be-
tween two states of a quantum system. The first one is the usual ℓ2 distance, the
other one is the so-called fidelity.

ℓ2 distance

Having two Bloch vectors x and r the ℓ2 distance between them is defined as

d(x, r) =

(
∑

j

(xj − rj)
2

) 1

2

(92)

The properties of ℓ2 distance are:

• d(x, r) ≥ 0

• d(x, x) = 0

• d(x, s) ≤ d(x, r) + d(r, s)

53



Fidelity

Another useful quantity, the fidelity [30] is defined for two density matrices χ and ρ
as

f1(χ, ρ) =

(

Tr
(

χ
1

2 ρχ
1

2

) 1

2

)2

(93)

Note, that sometimes the above expression without square is called fidelity [46]:

f2(χ, ρ) = Tr
(

χ
1

2 ρχ
1

2

) 1

2

(94)

The basic properties of fidelity (defined as either (93), or (94)) are:

• 0 ≤ f(χ, ρ) ≤ 1

• f(χ, ρ) = f(ρ, χ)

• f(χ, χ) = 1.

5.2 Quantum measurement and state estimation

Measurement makes quantum mechanics hard to treat using control theory, since it
also acts as a special stochastic input, or disturbance (see section ??), that intervenes
the system any time a measurement is done.

In what follows two types of measurement is introduced. The classical measure-
ment is discussed in section 5.2.1 while a more general measurement is defined in
section 5.2.2.

Because of the specialities of the measurements, the problem of state estimation
as it was defined in Appendix A.1.3 is not easy to formulate for quantum systems so
a simplified version commonly used in quantum information theory [24] is introduced
in section 5.2.3.

5.2.1 von Neumann measurement

The measurable physical quantities of quantum systems (the so called observables)
are represented by self-adjoint operators of H (i.e. self-adjoint matrices of C

dimH×dimH)
[7].

The measurement of an observable O has a probabilistic nature. The possible
outcomes of the measurement are the different λ eigenvalues of O, the corresponding
probability is

Prob(λi) = TrEiχE∗
i ,

where Ei are the projections onto the subspace spanned by the eigenvector corre-
sponding to λi, i.e.

∑

i

Ei = I, E2
i = Ei.
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Moreover, the state of the system S after measuring O, and having the outcome λi

changes to

χ′ =
EiχE∗

i

TrEiχE∗
i

that means that the measurement has lost its good property of being a passive
operation known from classical physics. The measurement changes the actual state
of the quantum system.

The above measurement is called von Neumann measurement, the most popular
example of it is the spin measurement, i.e. the measurement of the observable σ1,
σ2, or σ3.

Spin measurement of a qubit

In what follows, the observable being the i-th Pauli spin operator σi is detailed since
some of the quantum state estimation methods presented in chapter 6 and chapter
7 are based on spin measurements.

In this case the observable to be measured is O = σi. The possible outcomes of
this measurement i.e. the eigenvalues of σi are ±1. Thus, the spectral decomposition
of the observable is

σi = E+1 − E−1, (95)

where

E+1 =
1

2
(I + σi), E−1 =

1

2
(I − σi). (96)

The probability of having outcome ±1 can be computed from

Prob(±1) = TrE±1χE∗
±1. (97)

Using that the cyclic permutation behind the trace operator is allowed, and that
E±1 are projections, (97) can be written as

Prob(±1) = 1
2
Trχ(I ± σi) =

= Tr
(

1
2
(I + x1σ1 + x2σ2 + x3σ3)

1
2
(I ± σ1)

)
=

= 1
2
(1 ± xi).

5.2.2 Positive operator valued measurement

A more general measurement type is the so-called POVM (positive operator valued
measurement). It is defined by a set of self-adjoint positive semidefinite operators
Fi of H such that ∑

i

Fi = I ∈ H.

The difference between von Neumann measurement (section 5.2.1) and positive op-
erator valued measurement is that as opposed to the von Neumann measurement,
Fi-s are not necessarily orthogonal, i.e. the FiFj 6= 0 in general. That’s why the
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number of elements of a POVM can be greater than the dimension of the Hilbert
space H. The probability of an outcome belonging to Fi is

Prob(i) = TrFiχ,

where χ is the actual state of the system. The value of the density matrix after the
measurement is

χ′ =
MiχM∗

i

TrMiχM∗
i

,

where Mi are the so-called Kraus operators:

Fi = M∗
i Mi.

POVM generalization of the spin measurements

The Pauli spin measurements can also be generalized to a POVM, so that the
operators of the measurements are related to (95) and (96) defined in the previous
section:

F+i =
1

6
(I + σi), F−i =

1

6
(I − σi), i = 1, 2, 3. (98)

Of course, the outcomes of a POVM cannot be identified by the eigenvalues of an
observable. It is enough to assign different symbols to the different operators (98).
The simples choice is

−3, − 2, − 1, + 1, + 2, + 3,

where the pair (−i, +i) corresponds to the possible outcomes of the spin measure-
ment (95), i = 1, 2, 3. The probability of the i-th outcome is

Prob(+i) =
1

6
(1 + xi), Prob(−i) =

1

6
(1 − xi), i = 1, 2, 3.

5.2.3 The quantum state estimation problem

As it was construed in section 5.2, the measurement act as a special disturbance
in the quantum mechanical domain, moreover it is probabilistic. That’s why if one
measures a certain quantum system it is not possible to have enough information
from a single measurement. On the other hand, a second identical measurement on
the same system cannot be performed since the state has been changed with the first
measurement so the problem statement of state estimation for quantum systems [24]
needs some simplification.

In order to avoid the above difficulties it will be assumed in the sequel that
sufficiently many identical copies of the system is available for measurement. We
perform measurements on the quantum systems one after another, that is, a system
is measured only once, the next measurement is performed on the next copy, so
the state of the quantum systems after the measurement are irrelevant from our
viewpoint. This way the system dynamics is omitted and the state estimation is
reduced to a parameter estimation problem (see section 1.2).
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The goal of state estimation is to determine the density operator ρ of a quantum
system by measurements on n copies of the quantum system which are all prepared
according to ρ [4, 11, 34]. The number n corresponds to the sample size in classical
mathematical statistics. An estimation scheme means a collection of measurements
and an estimate for every n. The estimate is a mapping defined on the measurement
data and its values are density operators. For a reasonable scheme, we expect the
estimation error to tend to 0 when n tends to infinity (i.e. we expect to have an
asymptotically unbiased estimate) as a consequence of the law of large numbers.

5.3 Earlier work on quantum state estimation

The method of estimating the state of a system based on measurements has different
names in different fields. The term state estimation is used by the engineering
community (see section 1.2) while physicists use the expression state tomography.
In the following any of them might be used.

Authors from physics related fields, e.g. [53] put more stress on the experimental
implementation of a method (e.g. quantum optics, interferometers, etc.). [66] gives
an estimation scheme (i.e. a POVM with 4 operators and an estimator). An adaptive
extension of the method is also given.

State estimation based on classical statistical estimation methods are given in
[24], [10]. A mutually unbiased measurements scheme is proposed by [67].

There only a few papers in which engineering tools are attempted to use for quan-
tum systems. In [38] a optimal experiment design for quantum systems was treated
as a convex optimization problem, while [39] handles the parameter estimation of
quantum systems with convex optimization tools.

The available tools on the quantum state estimation using engineering methods
suffer from the fact, that they give result on the distribution and variance of the esti-
mate only in the asymptotic sense. On the other hand the physics related literature
provides only ad hoc methods without further mathematical analysis.
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Chapter 6

Bayesian state estimation of a
quantum bit

In this chapter a state estimation method for a single qubit is presented that uses
Bayesian approach described in section 1.2 and Appendix A.1.4 in more details.
Throughout the chapter the Bloch parameterization of quantum states (section
5.1.4) is used, so the aim will be to estimate the value of the Bloch vector. Using
the assumptions of section 5.2.3, i.e. neglecting the dynamics defined by (84) the
state estimation problem (see section 1.2) turns to a parameter estimation problem,
see Appendix A.1.4.

Section 6.1 handles the problem componentwise i.e. a Bayesian estimation
scheme is given for all 3 components of the Bloch vector.

Section 6.2 connects the results of section 6.1, and gives an estimate for the Bloch
vector, however it may lay out of the state space i.e. the Bloch ball. This problem
will be solved in section 6.2.2.

The two different estimators are compared in section 6.3 using a software tool
for simulating quantum mechanical systems, which is presented in section 6.3.1.

6.1 Componentwise estimation of the Bloch vec-

tor [O7]

First the simplest case is considered when a single component of a qubit is to be
estimated. This can be regarded as two related components of the so-called standard
six-state-tomography [24].

The method of estimation is discussed for the component in the direction of the
Pauli operator σ1, but any other direction can be treated similarly. The speciality of
a component-wise estimation is that one can apply the methods of classical statistics,
because the outcomes of a measurement constitute a probability distribution.

6.1.1 Bayesian estimate

In order to be able to apply the Bayesian parameter estimation formula (145) de-
fined in section A.1.4, the parametrized system model p(y(k)|Dk−1, θ) needs to be
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constructed. The parameter to be estimated is θ = x1 that is a single parameter.
It is important to note that the methods of classical statistics can now be applied
because the estimations in the different directions are treated separately.

Measuring the spin in the σ1-direction

Concentrating on the measurements for the observable A = σ1 (see section 5.2.1)
one can associate the measured value +1 or −1 at a discrete time instance k to the
system output y(k). Due to the measurement strategy laid down in section 5.2.3,
there is no dynamics associated to the system (in this case to the qubit source) and
the measurements are independent, therefore

p(y(k)|Dk−1, x1) =







P+1 = 1
2
(1 + x1), if y(k) = 1,

P−1 = 1
2
(1 − x1), if y(k) = −1.

(99)

It is important to note that the parametrized system model p(y(k)|Dk−1, x1) depends
now on the parameter x1 only, thus

p(y(k) | Dk−1, θ) = p(y(k) | Dk−1, x1)

in this case.

Recursive estimation

One can construct a Bayesian parameter estimation scheme for the parameter x1

using only the measured values for the observable σ1 from (145):

p(x1|Dk) =
p(y(k)|x1)p(x1|Dk−1)
∫

P (y(k)|ν)p(ν|Dk−1)dν
. (100)

The above estimation is recursive and applies for updating the estimate p(x1|Dk−1)
by using a single measured value y(k), i.e. from step (k − 1) to step k.

Prior estimate

As it was mentioned in Appendix A.1.4, Bayesian estimation scheme is able to take
any initial a’priori knowledge about the state to be estimated into account in the
form of a prior probability density function, p0(x1) = p(x1|D0).

One-shot estimation

The non-recursive one-shot version of the Bayesian estimate can be developed from
the following ingredients, having k measured values.

1. Assume that we start our estimation with a prior probability density function
p0.

2. The value +1 is observed l times and the value −1 (k − l) times.
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Then the above recursive formulae (100) with (99) becomes:

p(x1|Dk)(t) =
(1

2
(1 + t))l(1

2
(1 − t))k−lp0(t)

∫
(1

2
(1 + ν))l(1

2
(1 − ν))k−lp0(ν) dν

(101)

Part of this probability density function suggests the β-distribution after the variable
transformation

s =
1

2
(1 + t) (102)

(see e.g. [20] for the properties of the β-distribution). It seems to be worthwhile to
assume p0 in a similar form,

p0(t) = C

(
1 + t

2

)λ(
1 − t

2

)κ−λ

(t ∈ [−1, 1]) .

(Behind this assumption, one can think about previously performed measurements
with λ times the value +1 and κ − λ times the value −1. ) So the conditional
probability density is

p(x1|Dk)(t) = C

(
1 + t

2

)l+λ(
1 − t

2

)k+κ−l−λ

(103)

on the interval [−1, 1]. (Here the normalization constant C depends on the parame-
ters in the distribution.) The RHS of (103) is called transformed β-distribution and
properties of the usual β-distribution can be used to work with it.

Based on the idea of the above derivation, similar Bayesian estimation schemes
for each component of the Bloch vector can be constructed. The estimates of the
individual components will be stochastically unrelated, because the observables σ1,
σ2 and σ3 are incompatible. (Compatible observables O1 and O2 commute, i.e.
O1 · O2 = O2 · O1, thus form a set of classical random variables.) The Bayesian
estimate is then given separately for the parameters xi, i = 1, 2, 3 by the formula
(101).

6.1.2 Point estimate

Equation (101) shows that the estimate has a β-distribution with parameters (l +
1 + λ) and (k − l + 1 + κ − λ) in the transformed variable s.

Bayesian point estimate

Then one can choose the mean value of this distribution

m1 =
l + 1 + λ

k + κ + 2
(104)

as a point estimate and use the variance

σ2
1 =

(l + 1 + λ)(k − l + 1 + κ − λ)

(k + κ + 2)2(k + κ + 3)
(105)

as a measure of uncertainty.
It is important to note that the above estimates are computed from two infor-

mation sources:
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1. the overall number of measurements k and the number of measurements l with
the outcome +1 and

2. the prior distribution that is expressed in terms of the fictive number of mea-
surements (κ − 1) with the number of measurements (λ − 1) of the outcome
+1.

The above statistics (104) can be used to construct an unbiased estimate for x1

in the form

x̂1 = 2
l + 1 + λ

k + κ + 2
− 1 (106)

using the variable transformation (102).

6.2 Estimation of the Bloch vector [O7]

Turning to the problem of estimating the state of a qubit as a Bloch vector the
parameters to be determined are x = (x1, x2, x3)

T . It is crucial to note that the
observables σ1, σ2 and σ3 are incompatible in the sense of quantum mechanics.
Therefore the estimation of x1, x2 and x3 is treated separately but then the algebraic
inequality constraint (89) that relates the three component of a Bloch vector cannot
be taken into account.

6.2.1 Unconstrained Bayesian estimation

The maximum-likelihood state estimation of quantum systems (see [10] or [38])
also needs the joint probability density function (abbreviated as p.d.f.) to max-
imize. Without the above consideration, one could interpret the incompatibility
of the observables as the independency of the measurements, thus the joint p.d.f.
is constructed as the product of the marginal p.d.f.’s. Note that this approach is
consistent in the limit, when the number of measurements is large, but may fail
elsewhere. With this caution the product form of the componentwise p.d.f.’s (103)
is used here, too.

For the sake of simplicity it is assumed that the same number of measurements
k is applied in all of the σ1, σ2 and σ3 directions but one observes the measured
value +1 in the σ1-direction l1 times, and in the σ2 and σ3-directions l2 and l3 times,
respectively. The measurement record Dk is formed from this integers and from k,
and the joint conditional p.d.f. of the state estimate is formed from the marginal
p.d.f.’s in the form of (103):

p(x1, x2, x3|Dk)(t, u, v) = C∗p(x1|Dk)p(x2|Dk)p(x3|Dk) (107)

6.2.2 Constrained Bayesian estimation

In the Bayesian state estimation framework, the common way of respecting an in-
equality constraint for the elements of a parameter vector is to choose the prior
p.d.f. accordingly [48] and then the recursive estimation formula (100) will transfer
this property to any posterior p.d.f. With this approach one looses the β-form of
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the posterior p.d.f.’s, because the prior is not in β-form. Therefore, the inequality
(89) is respected separately by setting the value of the joint p.d.f. to zero outside the
valid region. Thus the proposed state estimation consists of two steps:

(i) estimating the componentwise p.d.f.’s of the elements of the Bloch vector x1,
x2 and x3 separately as described in section 6.1 and

(ii) regularization of the estimate.

Having estimated the conditional p.d.f.’s separately and formed p.d.f. (107) from
them, a constrained p.d.f. p(x1, x2, x3|Dk) is calculated as follows:

p(x1, x2, x3|Dk)(t, u, v) =

{
0 if t2 + u2 + v2 > 1
p(x1, x2, x3|Dk)(t, u, v) elsewhere

(108)

The constrained p.d.f. (108) is no longer of β-type, therefore its mean value
vector m should be computed by numerical integration according to the definition:

m =

∫

t2+u2+v2≤1

τ · p(x1, x2, x3|Dk)(τ) · dτ (109)

where τ = [t, u, v]T .

6.3 Comparison based on computer simulation re-

sults [O7]

In what follows, the qubit state estimator presented in section 6.2.1 and its con-
strained extension (section 6.2.2) is compared via computer simulation. The differ-
ence between the two estimators depends on the number of measurements and on
the length of the Bloch vector, (i.e. the degree of purity of the state).

6.3.1 A simulation software for quantum systems

In order to be able to analyze and compare the different estimation schemes it was
necessary to perform experiments. For the sake of this, a simulation software was
written [O8] in Matlab environment [60]. It is suitable for the dynamical simulation
of simple finite dimensional quantum mechanical systems, however this function
of the simulator is not used here. Different types of measurements can also be
implemented which makes it possible to compare not only different estimators but
also similar estimators using different kinds of measurements. The stochastic nature
of quantum measurement is modelled by random number generator. Some basic
functions of the simulator are briefly described in Appendix A.6.

6.3.2 The effect of the number of measurements

The effect of the constraining is investigated by estimating the state of a qubit in a
pure state with density matrix χ and Bloch vector x as follows:

χ =

[
0.5 0.5
0.5 0.5

]

, x = (1, 0, 0)T
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The dependency on the number of measurements (k) is examined through two
cases. In the first case 10 measurements are performed in each of the three direc-
tions. The componentwise p.d.f.’s of the first case can be seen in Figure 5. After

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

x
1

x
2

x
3

Probability density functions 

Figure 5: Componentwise p.d.f.’s after 10 measurements

Figure 6: Joint p.d.f. after 10 measurements

constraining the joint p.d.f. (Figure 6) it is possible to determine the expectation
value of the Bloch vector x. The expectation values originating from the marginal
p.d.f.’s and that from the joint p.d.f.’s are summarized in (Table 1). It is important

k = 10 componentwise joint real value
x1 0.8333 0.6494 1
x2 −0.3333 −0.2088 0
x3 0.6667 0.4557 0

length 1.1180 0.8204 1

Table 1: Comparison of the two estimates (k = 10)

to note that using only the separate estimates for x1, x2, and x3 it is possible to get
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an estimation for the Bloch vector with a length being greater than 1 which is not
in the Bloch ball (first column of Table 1). The constraining of the product type
joint p.d.f. solves this problem, it cannot give a false estimate of this kind.

The situation is quite similar for the case with 100 measurements. First the
separate marginal probability density functions (Figure 7) are determined. The
constrained joint p.d.f. (Figure 8) is calculated by formula (108). As it was ex-
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Figure 7: Componentwise p.d.f.’s after 100 measurements

Figure 8: Joint p.d.f. after 100 measurements

pected, the precision of the estimate increased with the number of measurements.
Table 2 shows that the separate marginal estimations of x still can violate the con-
straint x2

1 + x2
2 + x2

3 ≤ 1.
Of course, if the Bloch vector to be estimated is somewhere in the middle of the
Bloch ball then the constraining has no effect, so the two estimates for the Bloch
vector (i.e. the one originating from the separate componentwise p.d.f.’s and the
one from the joint p.d.f.) gives the same expectation value.

6.3.3 The effect of the length of Bloch vector

The aim of the next experiment was to investigate the performance of the constrained
and the unconstrained estimators when Bloch vectors with different length (i.e.
different purity) are estimated.
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k = 100 componentwise joint real value
x1 0.9804 0.9609 1
x2 −0.0196 −0.0139 0
x3 −0.2157 −0.1512 0

length 1.0040 0.9729 1

Table 2: Comparison of the two estimates (k = 100)

For this, the number of measurement is fixed to k = 40 and two extreme states
are to be estimated. The first state is the totally mixed one:

χmixed =

[
0.5 0.0
0.0 0.5

]

, xmixed = (0, 0, 0)T

The two estimators were expected to be identical since the state is at the middle of
the Bloch ball and the number of measurements is not extremely small.

Figure 9 shows the probability density functions for the Bloch vector components,
the joint p.d.f. is depicted in Figure 10. It is apparent, that the joint p.d.f. is not
constrained (i.e. it has no nonzero value outside the state space), and in the middle
of the ball the β-distribution is symmetric, so it gives concentric spheres as level
surfaces (Figure 10). Table 3 contains the point estimates computed from the
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Figure 9: Componentwise p.d.f.-s for χmixed

componentwise and the joint p.d.f.-s, it can be seen that the two estimators are
identical for this case.

The other extreme state is a pure state laying on the Bloch sphere (on the surface
of the Bloch ball):

χpure =

[
0.7906 0.2179 − 0.3436i

0.2179 + 0.3436i 0.2094

]

, xpure = (0.4359, 0.6872, 0.5812)T

The componentwise Bayesian estimates of the Bloch vector elements can be seen in
Figure 11, the constrained Bloch vector estimate is in Figure 12. The constraining
step described in section 6.2.2 was necessary for this state. It can be seen in Table
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Figure 10: Joint p.d.f. for χmixed

k = 40 componentwise joint real value
x1 0.0476 0.0476 0
x2 0.0952 0.0952 0
x3 0.0952 0.0952 0

length 0.1429 0.1429 0

Table 3: Comparison of the two estimates for χmixed

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x

1
x

2
x

3

Probability density functions 

Figure 11: Componentwise p.d.f.-s for χpure

4, that the unconstrained Bloch vector estimate would be outside the Bloch ball
(its’ length is 1.0202). This example demonstrates the main drawback of the used
constraining method: it is practically impossible for the constrained estimator to
result in a pure state.

6.4 Summary

A slightly modified state estimation problem defined in section 1.2 was solved for a
quantum bit using the results of Bayesian parameter estimation introduced in section
1.2 and Appendix A.1.4. The estimation was based on the Bloch vector representa-
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Figure 12: Joint p.d.f. for χpure

k = 40 componentwise joint real value
x1 0.3333 0.2718 0.4359
x2 0.8095 0.7432 0.6872
x3 0.5238 0.4391 0.5812

length 1.0202 0.9051 1.0000

Table 4: Comparison of the two estimates for χpure

tion of quantum states and on the von Neumann measurements of the three Pauli
spin operator.

Since the three measurements were assumed to be independent (because they are
incompatible), the problem was simplified to componentwise estimations of the three
Bloch vector. As the componentwise estimates were independent the total estimate
was obtained by multiplying the three probability density functions.

The obtained Bayesian state estimator was expected to perform weak for es-
timating pure states and/or for estimating from small measurement data, so an
additional constraint was added to the problem. This step resulted in an estimator
that always gives a physically meaningful result, however it’s computation is more
difficult.

Afterwards, the the expectations were supported by simulation results and the
behavior of the two estimators was investigated under different circumstances, in
the case of small and medium sample sizes and for pure and mixed states.
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Chapter 7

Point estimation of N-level
quantum systems

The subject of this chapter is the state estimation of N -level quantum systems [24].
As it was mentioned before in section 5.1.3, in this case the boundary of the state
space is not the set of pure states but the non-invertible density matrices.

Section 7.1 defines the observables to be measured and derives the estimator
that maps the set of measurement outcomes to the state space (actually to a set
contains the state space). The estimator is modified in section 7.2 in order that the
range of it is identical to the state space. The modification is done by introducing
a positivity constraint to be respected.

Finally, in section 7.3 the effectiveness of the estimator is examined and compared
to two different quantum state estimation schemes available in the literature.

At the end of the chapter the results are summarized in section 7.4.

7.1 The unconstrained estimation scheme [O10]

In order to define an estimation scheme one needs to define a measurement strategy
and afterwards, an estimator is constructed that maps the set of possible outcomes
onto the set of quantum states (density matrices, or Bloch vectors, see section 5.1).

In what follows, a set of observables are defined for finite quantum mechanical
systems, that will be the basis of the estimation scheme.

7.1.1 Measurement strategy

In chapter 6 the quantum system of interest was the single qubit so the von Neumann
measurement of the Pauli spin was applicable as a measurement scheme. Since
this chapter treats quantum systems more general than a qubit, another set of
observables is necessary.

The measurement scheme used is based on the Bloch parametrization (91) of
N -level quantum systems. In the qubit case the elements of the Pauli basis were
used as observables, in this case the same strategy is used, i.e. the observables are
the N ×N self-adjoint matrices in (91) are applied. The three set of observables are
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in the form
Xij = Eij + Eji, i < j
Yij = −iEij + iEji, i < j
Zii = Eii, i = 1, . . . , N − 1.

(110)

Note, that for the 2-level case, X12 = σ1, and Y12 = σ2 holds. The spectrum of Zii

is {0, 1}, i.e. the possible outcomes of its measurement are 0 and 1. The spectrum
of Xij and Yij is {−1, 0, 1}.

The measurement scheme (110) means that the observables Zii, Xij and Yij are
measured on the r copies of the original system, i.e the complete set of observables
used in the measurement scheme (110) is measured r times. Since the trace of
a density matrix is 1, the measurement of the first N − 1 diagonal observables
(Zii) gives enough information about the diagonal entries of χ, i.e. ZNN can be
removed from the set of observables. It means, that N2 − 1 observables form the
collection of measurements. Hence the overall number of measurements performed
is n = r(N2 − 1). This way a measurement data of size r holds the information
about each entry of χ.

7.1.2 State estimator for N-level quantum systems

The aim is to estimate the N × N density matrix χ of a quantum system. The
parametrization is naturally given by the entries of the matrix. In what follows, we
are given several copies of a N -level quantum system in the same state. We perform
measurements on the systems one after another, that is, a copy of the system is
measured only once, the next measurement is performed on the next copy of the
system, so the states of the systems after the measurement are irrelevant from our
viewpoint.

If the task is to estimate the real part of the (i, j)-th entry of the density matrix
χ, then the observables Xij = Eij +Eji are measured . Their spectral decomposition
is

1 · 1

2
(Eii + Eij + Eji + Ejj) + 0 ·

∑

i6=m6=j

Emm − 1 · 1

2
(Eii − Eij − Eji + Ejj)

and its measurement has three different outcomes, ±1 and 0. The probabilities of
the outcomes ±1 are

Prob(Xij = ±1) =
1

2
(χi,i ± χi,j ± χj,i + χj,j) =

1

2
(χi,i + χj,j) ± Re χi,j . (111)

To estimate the imaginary part, observables of form Yij = iEij − iEji are measured
with spectral decomposition

1 · 1

2
(Eii + iEij − iEji + Ejj) + 0 ·

∑

i6=m6=j

Emm − 1 · 1

2
(Eii − iEij + iEji + Ejj).

The probabilities of the outcomes ±1 and 0 are

Prob(Yij = ±1) =
1

2
(χi,i ± iχi,j ∓ iχj,i + χj,j) =

1

2
(χi,i + χj,j) ± Im χi,j . (112)
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Finally, for the diagonal entries one has

Prob(Zii = +1) = χi,i. (113)

Altogether there are N2−1 different measurements and each of them is repeated r
times. The measurement outcomes form a set Dn and this is the domain of the state
estimator. To determine the estimate one needs only the relative frequencies of the
outcomes of the N2−1 different measurements, all of them are performed r times. If
M is one of the observables which has an outcome t, then the relative frequency of t
when the measurement is performed r times will be denoted by ν(r,M, t). According
to the law of large numbers, ν(r,M, t) → Prob(M = t) as r → ∞. (Of course,
Prob(M = t) depends on the true state χ of the system.)

The following estimate is natural:

χ̂un
i,i = ν(r, Zii, +1) for (1 ≤ i < N)

χ̂un
N,N = 1 −∑N−1

i=1 ν(r, Zii, +1),

Reχ̂un
i,j = 1

2
(ν(r,Xij, +1) − ν(r,Xij,−1)), i < j

Imχ̂un
i,j = 1

2
(ν(r, Yij, +1) − ν(r, Yij,−1)), i < j.

(114)

where χ̂i,j denotes the (i, j)-th entry of the estimated density matrix.
Notation, “un” is an abbreviation of the word “unconstrained”. It may happen

that χ̂un is not a positive semidefinite matrix, hence it is not an estimate in the
really strict sense. By definition, the range of the above estimator is the set of all
self-adjoint N ×N matrices of trace 1. On the other hand, the density matrices are
self-adjoint N ×N positive matrices, thus, they form an open subset of the range of
the estimator.

7.1.3 Properties of the estimate

Because of construction, the above unconstrained estimate χ̂un defined by (114)
is unbiased. It follows from the fact that the expectation value of the relative
frequencies involved are the probabilities. The expectation values of the elements of
the estimator can be computed as

E χ̂un
i,i = E ν(r, Zii, +1) = Prob(Zii = +1) = χi,i

E Re χ̂un
i,j = E 1

2
(ν(r,Xij, +1) − ν(r,Xij,−1))

= 1
2
(Prob(Xij = +1) − Prob(Xij = −1)) = Re χi,j

E Im χ̂un
i,j = E 1

2
(ν(r, Yij, +1) − ν(r, Yij,−1))

= 1
2
(Prob(Yij = +1) − Prob(Yij = −1)) = Im χi,j

Thus, the expectation value of χ̂un is the true state χ of the system, so it is an
unbiased estimate.
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It was seen in chapter 6 that the properties of the unconstrained estimator depend
very much on the true state, i.e. it sometimes failed when the state χ to be estimate
was on the boundary of the state space, i.e. it was a pure state in the qubit case.
The same phenomena can be observed in the case of the estimator (114), when the
number of measurement data is small (n is small), or the real state χ is not invertible
(for N -level systems the notion of pure state is not equal to the boundary of the
state space, see section 5.1.4).

For invertible states, it can be shown [O10] using large deviation theorem, that
the probability of having a false estimate exponentially decreases with the number
of measurements:

Prob(χ̂un
n /∈ G) ≤ c1 exp(−c2n)

where c1 and c2 are constants [13], [O9], and G stands for the set of density matrices.

Theorem 1 Assume that χ is an invertible density matrix. The probability of that
χ̂un

n is not a density matrix converges exponentially to 0 as n → ∞.

Proof. The expectation value of χ̂un
1 is χ ∈ Mk. Cramér’s theorem tells us that

there is a function I : Mk → R
+ ∪ {+∞} such that for any open set containing χ

lim sup
n→∞

1

n
log Prob(χ̂un

n /∈ G) ≤ − inf{I(D) : D ∈ Mn \ G}

The RHS is strictly negative and if ρ is invertible, then we can choose G such that
it consists of density matrices (that is, its elements are positive definite). This gives
the proof.

The computation of the rate function I is theoretically possible, but we do not
need its concrete form. �

The situation is different when the state to be estimated is not invertible, i.e. it
is on the boundary of the state space. For example, consider the pure state

ρ =
1

2

[
2 0
0 0

]

=
1

2
(σ0 + σ3), (115)

and measure the following observables:

Z11 =

[
1 0
0 0

]

, X12 =

[
0 1
1 0

]

, Y12 =

[
0 −i
i 0

]

.

The measurement of Z11 gives 1 (with probability 1). For the the others we have

Prob(X12 = ±1) = Prob(Y12 = ±1) =
1

2
.

Let us introduce the binary valued random variable γ with

γ :=

{
1 with probability 1/2,
−1 with probability 1/2.

(116)

Then evidently γ2 = 1 with probability 1.
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The estimator can be regarded as a matrix-valued random variable in the form

χ̂un =

[
1 ((β1 + ... + βr) − i(γ1 + ... + γr))/2r

((β1 + ... + βr) + i(γ1 + ... + γr))/2r 0

]

,

where γi and βj are identically distributed independent random variables with the
same distribution as γ (116).

It is easy to see that the expectation value of the determinant of χ̂un is −1/2r.
This shows, that although the expectation value of the determinant is zero in the
limit (as a consequence of unbiasedness of the estimate), but the estimate has always
a negative eigenvalue with positive probability. Therefore, in this example χ̂un is a
rather bad estimate.

Figure 13 shows a simulation with another pure state (σ0+σ1)/2. The ℓ2 distance
of the estimator χ̂un and the true density matrix has been depicted as a function of
n. It is seen that the convergence is very slow, not of an exponential type.
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Figure 13: The ℓ2 distance between the true pure state (σ0+σ1)/2 and χ̂un converges
very slowly to 0 as n → ∞.

The above example shows the weak point of the unconstrained estimator (114)
namely, the case of non invertible states. If the eigenvalues of the true state are
strictly positive (and not very small), then the estimate is rather good. Note, that
the computations are essentially simpler in the 2×2 case, when the boundary of the
state space consists of pure states and the positivity of the estimate can be seen from
the length of the Bloch vector. In the 3× 3 case the boundary is more complicated,
it consists of the non-invertible densities.
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7.2 The constrained estimation scheme [O9],[O10]

As it was seen in section 7.1.3, problems arise when the estimator (114) faces with
data obtained from a small number of measurements, or when it has to estimate a
non-invertible state. To avoid the above problem, the estimator should be forced to
give a physically meaningful estimate.

The basis of the estimator presented in this section is the unconstrained estimator
(114). The measurement strategy is also the same as it was described in section 7.1.1.

7.2.1 The constrained estimator and its properties

Formally, the constrained state estimator χ̂ can be determined by solving the fol-
lowing optimization problem

χ̂ := argminωTr(χ̂un − ω)2 = argminω

∑

i,j

(χ̂un)i,j − ωi,j)
2 , (117)

where ω runs over the density matrices. The density matrices form a closed convex
set G, therefore the minimizer is unique. Note that for a qubit the closest positive
semidefinite matrix is easy to find. When the values of the estimate are 2×2 matrices,
they can be identified by vectors in R

3. When the estimate is unconstrained, it may
happen that the values go out of the Bloch ball.

If the values of the estimates are simply the Bloch vectors, then the solution of
(117) is simply

χ̂ =







χ̂un if ‖χ̂un‖ ≤ 1,

χ̂un

‖χ̂un‖ otherwise.
(118)

Due to the constraining, the estimator χ̂ is biased, however it is still unbiased in
the asymptotic sense, i.e. when the number of measurements (n = r(N2 − 1)) goes
to ∞. In other words, the constrained estimator converges to the unconstrained one
as n → ∞.

Theorem 2 The constrained estimate χ̂n is asymptotically unbiased.

Proof. We can use the fact that χ̂un
n is unbiased and to show that χ̂un

n is an asymp-
totically unbiased estimate we study their difference. Let p(y) be the probability of
the measurement result y and Y is the set of outcomes such that χ̂un

n (y) 6= χ̂n(y),
then evidently

∑

y

χ̂un
n (y)p(y) −

∑

y

χ̂n(y)p(y) =
∑

y∈Y

(χ̂un
n (y) − χ̂n(y))p(y) . (119)

If Dk ⊂ Mk is the set of density matrices, then Y is the set of outcomes y such
that χ̂un

n (y) /∈ Dk. Let us fix a norm on the space Mk. (Note that all norms are
equivalent.)

Let ε > 0 be arbitrary. We split Y into two subsets:

Y1 = {y ∈ Y : distance(χ̂un
n (y),Dk) ≤ ε} and Y2 = Y \ Y1.
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Note that distance(χ̂un
n (y),Dk) = ‖χ̂un

n (y) − χ̂n(y)‖. Then
∑

y∈Y

‖χ̂un
n (y) − χ̂n(y)‖p(y) ≤

∑

y∈Y1

‖χ̂un
n (y) − χ̂n(y)‖p(y) +

∑

y∈Y2

‖χ̂un
n (y) − χ̂n(y)‖p(y) .

The first term is majorized by ε and the second one by CProb(Y1). Since the first
is arbitrary small and the latter goes to 0, we can conclude that (119) goes to 0. �
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Figure 14: The ℓ2 distance between the true 3 × 3 state with eigenvalues
0.1186, 0.2871, 0.5943 and the estimate. When the number of measurements is more
than 200, the unconstrained estimate gives really a positive semidefinite matrix.

The difference between the two estimators (114) and (117) were examined also
via computer simulation, using the tool introduced in section 6.3 (see also Appendix
A.6, or [O8]). The results for a 3 level quantum system can be seen in Figure 14,
where the two estimators were to estimate an invertible state. In Figure 14 the
ℓ2 norm of the difference between the estimates and the real states are depicted.
Figure 15 and Figure 16 shows the behavior of the two estimators for an invertible
(mixed) state and a non invertible (pure) state of a N = 2 level system. In this
case, the fidelity (93) of the difference between the real and the estimated state was
the qualifying quantity. It is apparent, that for a mixed state (Figure 15) the two
estimates are different only for extremely few measurements (denoted by ×).

On the other hand, if the state to be estimated is non invertible, the difference
remains, moreover the unconstrained estimate almost always gives an indefinite χ̂un,
that results in a fidelity greater, than 1 (Figure 16).

7.2.2 Computing the constrained estimate

In what follows, two essentially different methods are proposed for determining
the constrained estimate χ̂. The first is a simple algebraic method, the second is
geometrical, and uses the Bloch representation of N -level states (section 5.1.4).
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Figure 15: The fidelity between the true 2 × 2 mixed state with eigenvalues
0.1235, 0.8765 and the estimate. When the number of measurements is more than
10, the unconstrained and the constrained estimates are the same.
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Figure 16: The fidelity between the true 2×2 pure state and the estimates. The un-
constrained estimate is often outside of the Bloch ball and in this case the (real part
of the complex) fidelity can be bigger than 1. The constrained estimate converges
to the true state.

Algebraic way

The computation of the minimizer of (117) is easier if χ̂un is diagonal. Since χ̂un

is self-adjoint, one can change the basis so that it can be assumed that χ̂un =
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Diag(e1, e2, . . . , eN) and e1, e2, . . . , ek < 0 and ek+1, ek+2, . . . , eN ≥ 0. The minimizer
is obviously diagonal, hence it is enough to solve

argminfi

∑

i

(ei − fi)
2

under the constraint fi ≥ 0 and
∑

i fi = 1. According to the inequality between the
quadratic and arithmetic means, one has

n∑

i=1

(ei − fi)
2 ≥

k∑

i=1

e2
i +

N∑

i=k+1

(ei − fi)
2 ≥

k∑

i=1

e2
i +

1

N − k

(
N∑

i=k+1

(ei − fi)

)2

=
k∑

i=1

e2
i +

1

N − k

(
k∑

i=1

fi − ei

)2

.

If

fi = ei + c

(

i = k + 1, k + 2, . . . , N, c =
1

N − k

k∑

i=1

ei, c < 0

)

are positive, then the minimizer is (f1, f2, . . . , fN), where f1 = f2 = · · · = fk = 0
and the other fi’s are defined above. If the N -tuple (f1, f2, . . . , fN) contains negative
entries, then the procedure must be repeated, the negative entries are replaced with
0 and the actual value of c is added to the other entries. After finitely many steps
the minimizer will be found. Figure 17 shows the details for N = 3.

In the general case, it is possible to change the basis such that χ̂un becomes
diagonal, since the ℓ2 distance is invariant under this transformation. So let

Uχ̂unU∗ = Diag(e1, e2, . . . , eN)

for a unitary U . Then compute the minimizer Diag(f1, f2, . . . , fN) using the above
procedure and

χ̂ = U∗Diag(f1, f2, . . . , fN)U .

Geometrical way of constraining

Having determined the value of the unconstrained estimator χ̂un it is possible to
convert it to a Bloch vector estimate using the Bloch representation (91) introduced
in section 5.1.4. The Bloch representation gives a clear geometric view on the
state space of quantum mechanical systems so geometric methods can be used to
determine the constrained estimate χ̂. Similarly to the qubit case, the constraining
means, that a Bloch vector being longer than 1, is shrunk onto the surface of the
Bloch ball. This idea applied for N -level systems. In this case, the boundary of the
Bloch vector space is difficult to formulate (see e.g. [35]).

The algorithm consists of 2 steps:

1. Determine the Bloch vector corresponding to the unconstrained estimate χ̂un.
According to (91), it is an N2 − 1 dimensional vector in R

N2−1. If the vector
lies outside the Bloch vector space , then the corresponding density matrix is
indefinite, i.e. it has negative eigenvalues as well.
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Figure 17: The constrained estimate for 3×3 matrices. The plain e1+e2+e3 = 1 of R
3

is shown. The triangle {(e1, e2, e3) : e1, e2, e3 ≥ 0} corresponds to the diagonal den-
sity matrices. Starting from the unconstrained estimate Diag(1/2,−1/2, 1), the con-
strained Diag(1/4, 0, 3/4) is reached in one step. Starting from Diag(1/6,−1/2, 8/6),
two steps are needed.

2. Now decrease the length of the estimated Bloch-vector, until the boundary
of the Bloch vector space is reached. It can be found using the fact, that
the density matrix has positive eigenvalues inside the state space, has a rank
deficiency (zero eigenvalue) on the boundary, and it has at least one negative
eigenvalue outside the state space (of course, it is not fortunate to call it density
matrix, since it is not). With a simple bisection algorithm it is possible to find
the Bloch vector length that corresponds to the boundary. The 2-level case
can be drawn, since it gives 3 dimensional Bloch vector space, a sketch of the
algorithm can be seen in Figure 18.

Numerical simulations show only a negligible difference between the two different
constraining methods, however the algebraic one is much easier to compute.

7.3 Comparison with other state estimation meth-

ods based on statistical properties [O10]

In this section different unbiased estimators of 2-level quantum systems (qubits)
will be used together with a slightly modified version of the unconstrained estimator
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Figure 18: An indefinite estimate in the Bloch vector representation for a pure state
of a qubit.

(114). The Bloch parametrization (88) of qubits will be used, i.e. the estimators give
an estimate x̂ of the Bloch vector x that describes the actual state of the system.
Note, that density matrix-valued estimators can be converted to a Bloch vector
without difficulty, using the formula (88), any estimate χ̂ can be expressed as x̂.

The mean quadratic error matrix [57] is used to measure the efficiency of the
different estimators. If the Bloch vector of the unknown real state of the quantum
system is x = (x1, x2, x3)

T , then the mean quadratic error is a 3 × 3 matrix defined
as

Vn(x)i,j :=
∑

y∈Yn

(x̂(y)i − xi)(x̂(y)j − xj) p(y) (1 ≤ i, j ≤ 3).

where Yn is the set of all possible measurement outcomes from n = 3r measurements,
x̂(y) denotes the value of the estimator x̂ if the concrete measurement data is y. (As
it was described in Appendix A.1.3 and section 5.2.3, the estimator is a mapping
from the set of possible measurement data to the state-space.) The probability of
the outcome y is denoted by p(y). Note, that since the following estimators are
unbiased, the mean quadratic error matrix is identical to the covariance matrix [57].

Two estimators can be compared using their mean quadratic error matrix. If
V 1(x) < V 1(x), then the estimator 1 is more effective, than estimator 2. Note, that
a matrix A is greater, than matrix B, if matrix A − B is positive (semi)definite.
Of course, two matrices are not always comparable since it is possible that their
difference is indefinite.
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7.3.1 The modified unconstrained estimator

In what follows, a modified version of the unconstrained estimator (114) is intro-
duced, and the mean quadratic error matrix is determined for it.

The main difference is in the measurement scheme, since in this case the Pauli
matrices will be used as observables. Note, that only Zii is changed to σ3 in the
measurement scheme (110), since Xij = σ1 and Yij = σ2 in the 2 level case.

Based on the slightly modified measurement strategy, the form of the Bloch
vector valued estimator is

x̂un =





2ν(r, σ1, +1)
2ν(r, σ2, +1)
2ν(r, σ3, +1)



 (120)

The calculation of the mean quadratic error matrix leads to

V un
n (x) =

3

n





1 − x2
1 0 0

0 1 − x2
2 0

0 0 1 − x2
3



 . (121)

When each measurement is performed r times, then

V un
n (x) =

3

n
V un

3 (x),

where n = 3r. Note, that the diagonal form of the above matrix is in good accor-
dance with the independency of the Pauli measurements. The estimator (120) also
uses only one relative frequency for each component of the Bloch vector estimate.

In [O10] a more general version of the above estimator was investigated by ap-
plying general (and not necessarily orthogonal) observables. The results showed,
that the mean quadratic matrix is minimal if the three observables are orthogonal.
It is similar to the result of [67], however in that approach the mean quadratic error
was minimized but the information gain was maximized.

7.3.2 Standard qubit tomography

The basis of the following estimator is the POVM introduced in section 5.2.2, or
[53]. The measurement has 6 outcomes with probabilities

Prob(+i) =
1

6
(1 + xi), Prob(−i) =

1

6
(1 − xi), i = 1, 2, 3.

It is important to note that (opposed to the previous section) there is only one kind
of measurement in this case, i.e. n = r.

Based on the above POVM, the qubit state estimate (based on r = n = 1
measurement) is defined as

χ̂stand(+i) =
1

2
(I+3σi) = −I+3F+i, χ̂stand(−i) =

1

2
(I−3σi) = −I+3F−i . (122)
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The symbols ±i stand for the different outcomes of the measurement corresponding
to the operators defined in section 5.2.2. It can be shown, that the estimator (122)
is unbiased.

The quadratic error matrix for n independent measurements is

V stand
n (x) =

1

n





3 − x2
1 −x1x2 −x1x3

−x1x2 3 − x2
2 −x2x3

−x1x3 −x2x3 3 − x2
3



 . (123)

To compare the efficiency of the standard qubit tomography and estimator (120),
the mean quadratic error matrices (121) and (123) are studied. The difference
V stand

n (x) − V un
n (x) has the form

1

n





3 − x2
1 −x1x2 −x1x3

−x1x2 3 − x2
2 −x2x3

−x1x3 −x2x3 3 − x2
3



− 3

n





1 − x2
1 0 0

0 1 − x2
2 0

0 0 1 − x2
3





=
1

n





2x2
1 −x1x2 −x1x3

−x1x2 2x2
2 −x2x3

−x1x3 −x2x3 2x2
3



 =
1

n





2 −1 −1
−1 2 −1
−1 −1 2



 ◦









x1

x2

x3



 ·
[

x1 x2 x3

]





where ◦ stands for the Hadamard product. Since the Hadamard product of two
positive semidefinite matrices is positive semidefinite, we have V stand

n (x) ≥ V un
n (x).

The measurement scheme defined in section 7.3.1 is more effective, than the standard
one .

7.3.3 Minimal qubit tomography

Consider the following Bloch vectors

a1 =
1√
3
(1, 1, 1), a2 =

1√
3
(1,−1,−1),

a3 =
1√
3
(−1, 1,−1), a4 =

1√
3
(−1,−1, 1).

and define the positive operators

Fi =
1

4
(σ0 + ai · σ) (1 ≤ i ≤ 4). (124)

They determine a positive operator valued measurement,
∑4

i=1 Fi = I. The proba-
bility of the outcome i is

Prob(i) = TrFiχ =
1

4
(1 + ai · x).

The above POVM is used and called minimal qubit tomography in [53]. In
this case n = r, again, i.e. the estimator is capable to give an estimate from 1
measurement as opposed to (120), which needs at least 3 measurements to give an
estimate.
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The density matrix-valued estimator using n = 1 measurement is

χ̂min(i) = −I + 6Fi (1 ≤ i ≤ 4).

is unbiased. If the measurement is performed n times, then the average (written in
Bloch vector-valued form) is

x̂min = 3
4∑

i=1

ν(n,A, i)ai (125)

where ν(n,A, i) is the relative frequency of the outcome i from the n measurements.
The mean quadratic error matrix is

V min
n (x) =

1

n





3 − x2
1

√
3x3 − x1x2

√
3x2 − x1x3√

3x3 − x1x2 3 − x2
2

√
3x1 − x2x3√

3x2 − x1x3

√
3x1 − x2x3 3 − x2

3



 . (126)

Unfortunately, the above matrix is not comparable with the mean quadratic error
matrix (121), i.e. their difference is indefinite. However, TrV un

n ≤ TrV min
n .

7.4 Summary

The quantum state estimation problem defined in section 5.2.3 was solved in this
chapter for general finite quantum systems. First of all, the observables were defined
which provide the basis of the estimation scheme. In this case, one observable was
defined for each parameter of the density matrix using the Bloch parametrization
(91).

The estimator gives a point estimate based on the relative frequencies of certain
outcomes of the previously defined observables. Just like for the Bayesian estimator
(chapter 6) the false estimates caused a problem that was solved by a modification
of the unconstrained estimator. The constrained estimate can be computed using two
different methods, however their results are practically the same (their difference is
negligible).

For the unconstrained estimator it was possible to compare its effectiveness to
two different estimation schemes known from the literature, called standard qubit
tomography and minimal qubit tomography. The comparison was based on their mean
quadratic error matrices of the estimators. The results shows that the unconstrained
estimator is more effective, than the other two.

81



Chapter 8

Conclusions

The aim of this chapter is to sum up the results of the previous four chapters. Section
8.1 places the results of part I and part II in the framework of state feedback control.
The new results proposed by the thesis are collected to four thesis points in section
8.2. The possible directions in future work are sketched in section 8.3.

8.1 Stability analysis and state estimation for state

feedback control

The results presented in this work are based on a suitable parametrized state-space
model of two physically motivated challenging system classes: the class of quasi-
polynomial systems and that of finite dimensional quantum systems. Both the
practically feasible stability analysis and the globally stabilizing feedback control
design of process systems in QP form, and quantum state estimation has been
possible using the framework of system- and control theory.

In part I, the quasi-polynomial system representation was used to describe gen-
eral nonlinear process systems. The state equation for an autonomous (truncated or
closed-loop) QP system (4) is parametrized in such a way that its stability depends
only on a quadratic matrix M = BA. Using a well-known physically motivated
Lyapunov function candidate family suitably designed for the QP model class, the
global stability analysis and also the globally stabilizing feedback design were for-
mulated as optimization problems. In particular, global stability analysis of QP
systems requires to solve an LMI for which practically feasible solution methods ex-
ist. Thus, the otherwise hard problem of global stability analysis falls into a solvable
category by utilizing the special structure of QP systems.

Similarly, a suitably parametrized state representation has been used to solve
the simplest state-feedback control related task, the state estimation of finite di-
mensional quantum mechanical systems in part II, where two essentially different
methods were developed and examined. Here the state is described by density
matrices that are positive self-adjoint matrices with unit trace. They have been
parametrized by using real vectors (Bloch vector parametrization, section 5.1.4).
This parametrization enabled us to use standard parameter estimation methods,
the Bayesian and the LS methods for quantum state estimation. A complete es-
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timation scheme was given in both cases. The difficulties arising from the nature
of quantum measurement was avoided by a ”measure-and-throw” assumption, i.e.
sufficiently many quantum systems was used being in the same state.

8.2 New results

The new scientific results presented in this work are summarized in this section.
They are arranged in four thesis points as follows.

Thesis 1. The global stability analysis of nonlinear process systems being in quasi-
polynomial representation has been formulated as a linear matrix inequality.
The chance to prove global stability has been extended by time-reparametrization
where the scaling factors were determined and the global stability is proved by
solving a bilinear matrix inequality. (Chapter 3)
([O1], [O2], [O3], [O4])
It was shown, that the negative definiteness condition of the Lyapunov func-
tion of QP and LV systems is equivalent to a linear matrix inequality, thus
the stability analysis of QP systems (and general nonlinear process systems
embedded into QP form) is equivalent to the feasibility of a LMI. The LMI is
non-strict if the model has been obtained by embedding.

It has been shown, that the time-reparametrization transformation introduces
a re-scaling in the QP system’s quasi-monomials, such that the global stability
of transformed QP system is equivalent to that of the original one. This way
the global stability analysis has been extended to a wider class of QP systems
by embedding the parameters of the time-reparametrization transformation
into the global stability analysis, when one has to solve a bilinear matrix
inequality.

Thesis 2. The globally stabilizing quasi-polynomial state feedback design problem
for quasi-polynomial systems has been expressed as a bilinear matrix inequal-
ity. The problem has been reformulated so that it can be solved by an existing
iterative LMI algorithm.
A supplementary feedback controller that shifts some coordinates of the closed
loop systems’s steady state has been computed from a linear set of equations.
Conditions on the number of shiftable coordinates were also given. (Chapter
4)
([O5], [O11])
A globally stabilizing state feedback design problem was formulated using the
global stability analysis results of Thesis 1. The problem has been solved as a
bilinear matrix inequality feasibility problem, having two groups of variables,
one for the parameters of the Lyapunov function and another for the feedback
gains. The proposed method does not utilize the objective function of the
BMI optimization problem (158), thus it is a possible point to introduce some
performance or robustness specifications.
If one is to solve just the BMI feasibility without additional criteria, the prob-
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lem has been reformulated so that an existent iterative LMI algorithm is suit-
able for its’ solution.

The stabilizing state feedback may shift the closed loop system’s equilibrium
points into unwanted values that’s why the possibilities of designing an addi-
tional feedback that (partially) sets back the original steady state were pro-
posed. It was shown that under certain conditions on the closed loop system’s
Lotka-Volterra coefficient matrix it is possible to design such a controller. It’s
parameters were determined from a linear set of equations. In most cases,
however, it is only possible to redesign the steady state for only a few number
of state coordinates.

Thesis 3. A Bayesian state estimation scheme was developed for a single quantum
bit. As a measurement scheme, the von Neumann measurement of the Pauli
spin operators was used. Using the independency of the applied measurements,
the problem was solved componentwise.
The estimator was improved in order to avoid estimates laying out of the state
space by an additional constraint. (Chapter 6)
([O6], [O7])
The relaxed state estimation problem defined in section 5.2.3 was solved for a
quantum bit using Bayesian methodology (Appendix A.1.4). The estimation
was based on the Bloch vector representation of quantum states and on the
von Neumann measurements of the three Pauli spin operator.

Since the three measurements are incompatible, the problem was regarded to
be an independent estimation of the three Bloch vector components. The total
estimate was obtained by multiplying the three probability density functions.
The obtained Bayesian state estimator performed weak for estimation pure
states, so an additional constraint was added to the problem. This step re-
sulted in an estimator that always gives a physically meaningful result, however
it’s computation is more difficult.

Using the simulator Spinsim the constrained and the unconstrained Bayesian
state estimation methods were compared. Their difference was outstanding in
the case of estimating a pure state, or estimating based on a small number of
measurement data.

Thesis 4. A novel, componentwise quantum state estimation scheme was developed
for N -level quantum mechanical systems. The measurement data were obtained
from the von Neumann measurement of N2 − 1 independent observables. The
estimator uses the measurement data of the above measurement to determine
the N2 − 1 parameters of the density matrix.
An algebraic and a geometric method was proposed to force the estimator to
produce physically meaningful result.
The effectiveness of the estimator was compared to other estimation schemes
using the mean squared error matrix. (Chapter 7)
([O8], [O9], [O10])
The quantum state estimation problem refined for quantum systems was solved
for N -level quantum systems, not only for qubits.
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The collection of observables consists of 3 group of von Neumann measure-
ments. The basis of the estimation scheme is the Bloch parametrization used
for general finite quantum systems. The estimator (114) consists of N2 − 1
equations for the N2 − 1 parameters of the density matrix, and gives a point
estimate based on the relative frequencies of certain outcomes of the observ-
ables.

It has been proven that the estimator is unbiased but suffers from the tendency
to give false estimates so a modification was necessary to respect the positivity
constraint (87).

It was shown that for invertible states the constrained estimator converges to
the unconstrained one when the size of the measurement data increases. If
the real state is on the boundary of the state space, then the unconstrained
estimator is useless, since it is always necessary to correct its result by one of
the two constraining methods proposed.

The effectiveness of the unconstrained estimator was compared to two different
estimation schemes available in the literature. The comparison was based on
their mean quadratic error matrices. It has been shown that the proposed
scheme is more efficient than the other two.

8.3 Future work and applicability areas

Based on the results presented in section 8.2 the aimed future directions are sum-
marized in this section. The areas of possible applicability is also presented here.

Quasi-polynomial system representation (4) is a good tool for describing bio-
chemical systems given in the form of reaction kinetic networks. The state variables
of such systems are typically concentrations, i.e. they are also positive systems.
These reaction kinetic networks are given by their mass action law description.
This special form enables to apply the results of classical reaction kinetics together
with the results of thesis points 1 and 2.

On the other hand, mixed mechanical-thermodynamical systems (e.g. gas tur-
bines) can also be embedded into QP representation, and with a Lyapunov function
(21) their global stability can be investigated. Note, that using a quadratic Lya-
punov function, the region of their (local) stability can be conveniently determined
by solving LMIs.

By formulating robustness and/or performance specifications as an objective
function it will be possible to prescribe the quality of the controller to be designed.
The selection of the feedback controller structure is also an important question since
a wise choice can decrease the size of the BMI to be solved. That’s why controller
structure selection based on graph theoretic methods is another direction of future
work.

The controller design BMI with the built-in robustness specifications and the
controller structure design together would extend the controller design problem to a
complete methodology for the stabilizing control of nonlinear process systems given
in QP representation.
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The measure-and-throw philosophy applied in the problem statement of quantum
state estimation is in good agreement with the measurement of the polarization of
photons in a photon beam, so the quantum state estimation methods presented in
thesis points 3 and 4 can be applied for photon source identification. This way, the
state of the system corresponds to the photon polarization, and since the polarization
of photons emitted by source is not varying, there is no need to deal with the
dynamics of the system.

After developing reliable state estimation methods for the quantum state es-
timation problem supposing no dynamics the next step would be to modify the
developed methods for quantum process tomography. Its problem statement is as
follows: known quantum states are sent through a quantum channel with unknown
parameters and the states leaving the channel are measured. Give an estimate of
the channel’s parameters.

Another possible way is to include quantum dynamics to the system whose state
is to be estimated. Of course, in this case a totally different kind of measurement
should be applied that influences the system not as rough as the von Neumann
measurement. The drawback of such measurement scheme might be the fact that it
would not provide as much information as the von Neumann, or POVM type.

After having a correct method for quantum state estimation that involves also
the dynamical model of the quantum system, the way is clear towards quantum
control.

As for the system theoretic description of the jump-like effect of the measurement
in the state trajectory, the class of impulsive systems [3] is a promising candidate.
The only difficulty is that the impulses caused by the measurement are stochastic,
i.e. it leads to the field of stochastic impulsive system.
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[O3] A. Magyar, G. Szederkényi, and K. M. Hangos. Quadratic stability of pro-
cess systems in generalized Lotka-Volterra form. In Proceedings of 6th IFAC
Symposium on Nonlinear Control (NOLCOS 2004), Stuttgart, Germany, 2004.
http://www.nolcos2004.uni-stuttgart.de.
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Appendix A

Appendix

A.1 Basics of system and control theory

In general, the word system (Figure 19) is used for various concepts and features of
the world. The common properties of them are the following [2]:

• The system is a well defined part of the world and it is isolated from its
environment.

• The interactions between the system and its environment are carried out using
signals that are time dependent variables. Through the input signal it is
possible for the environment to affect the system, while the responses of the
system are fed back to the environment via the output signal.

• All information about the system’s behavior up to the present is contained in
the actual state of the system. The state is also a signal just like the input
and the output.

SystemInputs   u Outputs  y

States  x

Figure 19: Scheme of a system

The system can be given by an abstract operator S that maps the set of input signals
onto the set of output signals.

Systems can be represented with various mathematical tools. Some of them use
only the inputs and the outputs, hence they are called input-output representations.
Another class is of state space representations which uses the states, in addition to
the inputs and outputs, for describing the behavior of the system.

If the time is regarded to be a continuous variable t ∈ R
+, then the representation

is a continuous time one. The other possibility is to choose the time set to be discrete
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(t ∈ {t0, t1, . . . tk, . . .}), which results in a discrete time system model [2].
Throughout this thesis, we restrict ourselves to the class of finite dimensional systems
where the state of the system at any time is described by a vector.

A.1.1 System classes, basic system properties

In what follows some of the most important state space models of different system
classes are introduced in brief, together with the most important system properties.

Continuous time linear time invariant systems

If the system operator S is both linear and time invariant, it is possible to describe
the system by a higher order linear differential equation with constant coefficients
[31]. Another way is to use the so-called state space representation:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

x(t0) = x0, (127)

where x ∈ R
n, u ∈ R

p, and y ∈ R
q. The matrices are accordingly

A ∈ R
n×n, B ∈ R

n×p, C ∈ R
q×n.

The above representation consists of a system of first order (linear) differential equa-
tions (state equation) and an algebraic equation (output equation). The important
dynamical properties of (127) such as controllability, observability, and stability can
be conveniently examined using tools of linear algebra.

System (127) is termed asymptotically stable, if

lim
t→∞

x(t) = 0

holds for the solution of

ẋ(t) = Ax(t), x(t0) 6= 0, t > t0. (128)

A system (127) is asymptotically stable iff all of the eigenvalues of matrix A have
strictly negative real part:

Reλi(A) < 0, i = 1 . . . , n.

Fundamental matrix of continuous time LTI systems The solution (128)
can be expressed in the following from

x(t) = Φ(t, t0)x(t0)

where Φ(t, t0) is the so-called fundamental matrix of the LTI system, [9]:

Φ(t, t0) = exp ((t − t0)A) (129)

The basic properties of the fundamental matrix are as follows.

• Φ(t0, t0) = I

• Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0), where t0 ≤ t1 ≤ t2

• It satisfies the matrix differential equation

Φ̇(t, t0) = AΦ(t, t0) (130)
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Continuous time nonlinear (time invariant) systems

A more general class of systems can be represented by the following state space
model:

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t))

x(t0) = x0, (131)

where
f : R

n+p → R
n, g : R

n → R
q

are nonlinear functions.
Analysis of nonlinear systems needs more sophisticated methods [64], [29]. The

stability analysis of (131) is twofold. Local stability around equilibrium points of
the state equation is performed by local linearization i.e. it is traced back to the
analysis of (127). On the other hand, global stability analysis calls for the searching
of a suitable Lyapunov function V with the following properties:

• scalar valued function: V : R
n → R

+

• positive: V (x(t)) > 0

• decreasing in time: d
dt

V (x(t)) < 0

Theorem 3 A system S is asymptotically stable if there exists a Lyapunov function
with the above properties.

Note, that the above theorem is not constructive, i.e. the form of the Lyapunov
function is not known for a general nonlinear system (131). Moreover, the Lyapunov
function of a system is not unique. However for certain system classes its general
form is well-known. E.g. for linear systems, it is a quadratic function

V (x(t)) = xT Px, P > 0. (132)

In spite of the fact that (132) is a Lyapunov function for (127), it can be used for
analyzing the stability of nonlinear systems: it is suitable for determining regions of
local stability around its equilibrium point(s) [47].

Nonlinear input affine systems

A special subset of systems in form (131) is the family of so-called nonlinear input
affine systems [64]. What makes it attractive is the fact that although the system
is nonlinear in the states, it is linear in its inputs.

ẋ(t) = f(x(t)) +

p
∑

i=1

gi(x(t))ui(t) (133)

y(t) = h(x(t)) x(t0) = x0,

where u(t) = (u1(t), u2(t), . . . , up(t))
T ,

f : R
n → R

n, gi : R
n → R

n, i = 1, . . . , p, h : R
n → R

q

are nonlinear functions.
Control methods available for nonlinear systems usually assume a state space

model of the form (133), see e.g. [29], [47].
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Discrete time linear time invariant stochastic systems

For the state space models (127), (131), (133) presented above the time t was a con-
tinuous variable, hence the state equations were differential equations [2]. Choosing
the time set to be discrete, one arrives at a state space model where the state
equation is a difference equation.

In practice, there are some inputs of the system that are not controlled. On
the other hand, the sensors measuring the output of the system also generate some
noise. This leads to the following system model:

x(k + 1) = Ax(k) + Bu(k) + v(k)
y(k) = Cx(k) + e(k)

(134)

where {v(k)}∞0 , and {e(k)}∞0 are zero mean discrete time independent white noise
processes, v(k) is called system noise, e(k) is termed sensor noise:

E[v(k)v(k)T ] = Rv, E[v(k)v(j)T ] = 0, k 6= j
E[v(k)e(j)T ] = 0, ∀k, j
E[e(k)e(k)T ] = Re, E[e(k)e(j)T ] = 0, k 6= j,

and the initial conditions of (134) are given by

E[x(0)] = m0, cov[x(0)] = R0

A.1.2 Controller design

The general problem statement of control is as follows. Given a system, and a control
aim, modify the system such that the modified one fulfills the control aim.

In most cases the control aim is reached by using feedback, i.e. the output signal
is fed back to the input through a subsystem called controller (see figure 20). It is

System

Controller

Inputs   u Outputs  y

States  x

Figure 20: Scheme of feedback control

possible to categorize the feedback controllers based on the

• type of the signal used (output feedback vs state feedback)

• dynamical properties of the controller. If it also contains the derivatives of the
signals then it is a dynamic feedback, otherwise it is called static feedback.

91



• type of the function implemented in the controller. E.g. a linear feedback con-
troller’s output is a linear function of its input signal. A wider class of feedback
controllers is covered by the term nonlinear feedback - but their analysis and
synthesis needs a deeper mathematical knowledge.

In what follows a few different feedback controller types are summarized in brief.

Linear quadratic (LQ) state feedback controller

For LTI systems given by their state space model (127), let us define the following
functional:

J(x, u) =

∫ T

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt, (135)

where matrices Q ≥ 0 and R > 0 are weighting the states and the inputs. Find an
input signal u(t), 0 < t < T that minimizes (135).
If the control energy available is cheap, then R is smaller than Q (supposed that
they are comparable). This setup leads to a control where the state- and output
signals have no overshoot, and they settle down relatively fast.
On the other hand, if the relation between Q and R was turned, then one would
get a closed loop system with weaker dynamical properties, but the control energy
consumption would be less.

Assuming, that T → ∞ in (135), and that the system is jointly controllable and
observable (see e.g. [21]), the solution of the above problem is a static state feedback
controller of the form

u(t) = −R−1BT Kx(t), (136)

where K is the solution of a so-called control algebraic Riccati equation:

KA + AT K − KBR−1BT K + Q = 0

It is necessary to emphasize, that the obtained controller (136) is a state feedback,
and in the general case it is only possible to measure the outputs of the system.
It means, that the scheme of figure 20 needs to be extended by a unit before the
controller that computes the state signal from the output, as it can be seen in figure
21. In case of deterministic signals, this unit is called state observer while in the

System

State 
estimator /
observer

State 
feedback

Inputs   u Outputs  y

States  x

x~

Figure 21: State feedback and state estimator

stochastic case the term state estimator is used.
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Input-output linearization via state feedback

The aim of this method is to apply a nonlinear state feedback in order to get a
closed loop system that is a linear one. Given a system in the form (133) where the
input- and output signals are both scalar, i.e. the general input-affine system model
(133) specializes to

ẋ = f(x) + g(x)u
y = h(x)

(137)

where f : R
n → R

n, g : R
n → R

n and h : R
n → R. Suppose, that the relative

degree of system (137) is r at point x0, i.e.

1. LgL
k
fh(x) = 0 for all x in a neighborhood of x0 and k < r − 1

2. LgL
r
fh(x) 6= 0

where Lfh(x) stands for the so-called Lie derivative [29]

Lfh(x) =
n∑

i=1

∂h(x)

∂xi

fi(x).

The relative degree r equals to the number of times one has to differentiate y(t) in
order that u(t) explicitly appear in y(r)(t).
Using the local coordinates transformation (138) in the neighborhood of x0,

z = T (x) =














h(x)
Lfh(x)

...
Lr−1

f h(x)

φ1(x)
...

φn−r(x)














(138)

where φi(x) are chosen such a way that Lgφi(x) = 0 around x0, i = 1, . . . , n − r,
and applying the input

u =
1

LgL
r−1
f h(x)

(
−Lr

fh(x) + v
)
,

the system (137) can be rewritten in the form

ż1 = z2
...

żr−1 = zr

żr = v
żr+1 = qr+1(z)

...
żn = qn(z)
y = z1

(139)
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It is apparent that the first r states of (139) form a linear subsystem with a new
input v, and there is an additional nonlinear dynamics, the so-called zero dynamics
[29]. The zero dynamics describes the systems behavior when its output y is forced
to be constantly zero.

The applicability condition of the above method is the asymptotic stability of
the zero dynamics. If it holds, then any suitable control method from the area of
LTI systems (e.g. an LQ type) can be applied to stabilize the linear subsystem, and
the overall dynamics will be stable.

A.1.3 State estimation

Most of the modern controllers (e.g. LQ, or H∞ optimal controllers [68]) use state
feedback. This calls for a method that determines the actual state x of the system
using the supposed system model and measured input-output data corrupted by
measurement noise. Such a method is called state estimation.

There are some requirements a good estimate x̂ should meet. The first one is
unbiasedness which means, that the expected value of the estimate x̂ equals to the
real state x. Among the unbiased estimates one strains after finding an estimate
with minimal variance. Moreover, a consistent estimate is needed, i.e. an estimate
that converges to the real state as the number of measurements increases.

Kalman-filter

As an example, the famous Kalman-filter [32] can be mentioned. The discrete time
version of the estimator for discrete time stochastic LTI systems is in the form

x̂(k + 1) = Ax̂(k) + Bu(k) + K(k)(y(k) − Cx̂(k)), E [x̂(0)] = m0. (140)

As it can be seen in (140), it uses a discrete time stochatic LTI system (134) where
the system noise is being modelled by the measurement noise. Of course, e(k) and
v(k) supposed to have similar statistical properties. The time dependent matrix
K(k) is the so-called Kalman-gain which is to be determined for each time instance
k.
Note, that the above estimator is unbiased, since both e(k) and v(k) are zero mean
random variables of the same distribution, k = 0, 1, 2, . . ..
Defining the reconstruction error process as

x̃(k) = x(k) − x̂(k),

the problem to be solved is the minimization of the norm of the covariance function
of x̃(k):

P (k) = E
[

(x̃(k) − E [x̃(k)]) (x̃(k) − E [x̃(k)])T
]

The minimization leads to the following pair of formulas:

K(k) = AP (k)CT (Re + CP (k)CT )−1

P (k + 1) = AP (k)AT + Rv − AP (k)CT (Re + CP (k)CT )−1CP (k)AT ,
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where Rv and Re are coming from (134).
The above estimator is optimal for Gaussian white noise processes only. The initially
assumed LTI system model is also a crucial point, and it is not recommended to differ
from it. However, the Kalman-filter can be extended both for nonlinear systems and
colored noise processes.

A.1.4 System parameter estimation

As it was seen in section A.1.2 and section A.1.3, most of the controller design and
state estimation problems need the dynamical model of the system. Estimating
the model parameters is also a basis of system diagnostics since different parameter
values may refer to certain faults of the plant. Thus, parameter estimation, or
identification of dynamical systems is an important field of system- and control
theory [52], [54].

The basic problem of system parameter estimation can be formulated as follows:
Given

• a parametric dynamical system model

ŷ = M(x; θ) (141)

where M is the model, θ is the vector of model parameters, and ŷ is the
predicted output computed by the model.

• a record of measurement data

Dk = {(x(i), y(i)), i = 0, . . . , k} ,

where y(i) is corrupted by measurement noise.

• a suitable signal norm ||.|| to measure the difference between the model output
yM and the measured output y of the system. The loss function describing
the quality of the parameter estimation can be defined as

L = ||y − ŷ||.

Find the estimate for the parameters θ of (141) that minimizes the loss function L.

Least squares parameter estimation

The basis of least squares (LS) parameter estimation is the direct minimization of the
prediction error. Its’ simplicity and good statistical properties make this estimation
method very popular [52], [62], [45].

The 2-norm of the prediction error signal based on N measurements is defined
as

VN(θ,DN) =
1

N

N∑

k=1

(y(k) − ŷ(k|θ))2 .
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The above quantity is also called the loss function of the estimation. If the param-
eterized system model is assumed to be

ŷ(k) = f(k, θ),

then the loss function is:

VN(θ,DN) =
1

N

N∑

k=1

(y(k) − f(k, θ))2 . (142)

For a given set of measurement data DN , the loss function VN(θ,DN) is a func-
tion that maps the parameter space onto R

+. The determination of the parameter
estimate is equivalent with the minimization of (142) with respect to θ, it can be
performed e.g. by gradient method.

Note, that if the model is a linear function of the parameters, then the minimizer
can be given explicitly, without searching.

The above introduced method uses all the available measurement data and the
estimate is determined in one step. Such parameter estimation methods are called
off-line. If the measurement data is not available together but only one at a time
(e.g. it is not possible to store a large amount of data), then online methods are
preferred.

Bayesian parameter estimation

The basic idea of Bayesian parameter estimation is that any unknown quantity (in-
cluding parameters θ) of a system is regarded as a random variable [48]. The mea-
sured values that are available from the system are used to determine the conditional
probability density function p(θ|Dk) of the unknown parameters conditioned on the
measured values Dk = {y(j) : j = 0, 1, ..., k}. In the case of discrete time stochastic
systems with measurable output {y(j) : j = 1, 2, . . . } that vary in time, one may
separate the current (τ = k) data from the previously measured ones in Dk−1 to
have

p(θ | Dk) = p(θ | y(k), Dk−1) . (143)

Then we can use the Bayes formula developed for conditional probability density
functions:

p(a|b, c) =
p(b|a, c)p(a|c)

∫
p(b|ν, c)p(ν|c) dν

(144)

with the correspondence

b ∼ y(k) , a ∼ θ and c ∼ Dk−1.

This way we obtain the following recursive formula for parameter estimation:

p(θ | Dk) =
p(y(k) | Dk−1, θ)p(θ | Dk−1)

∫
p(y(k) | Dk−1, ν)p(ν | Dk−1)dν

(145)

where p(y(k) | Dk−1, θ) is the parametrized system model describing the dynamics
of the system.
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There are two properties of the parameter estimation formula (145) that are
important to emphasize. Firstly, it needs a stochastic system model in the form
of a conditional probability density function. The other property is that it is an
online method, i.e. because of the recursive formula it is not necessary to have
all the measurement data at the starting of the estimation procedure. However, it
is possible to express (145) in a non-recursive way, that would result in an off-line
estimation method.

Another important speciality of Bayesian parameter estimation is that it can
take into account any initial a’priori knowledge about a parameter to be estimated
in the form of the so called prior probability density. With the prior probability
density, we can restrict the range of the parameter or give information about the
precision of the initial guess in the form of a variance.

A.2 Bloch vector space in the N-level case

The N -dimensional generalization of the Bloch vector space (a slightly different
version of the one described in section 5.1.4) is given in [35]. The basis matrices of
that approach are the generators Gi of SU(N). (Note, that this work uses a different
basis , see (91)).

The basic properties (87) of the density matrices are transformed to Bloch vectors
using the following theorem (see [35] for the proof)

Theorem 4 Let ai(x) be the coefficients of the characteristic polynomial det(tIN −
χ), where χ is a density matrix with properties (87) and define

B(RN2−1) = {x ∈ R
N2−1 : ai(x) ≥ 0, i = 1, . . . , N}.

Then a map

x ∈ B(RN2−1) → χ =
1

N
IN +

1

2
xiGi

is a bijection from B(RN2−1) to the space of density matrices.

The concrete form of the coefficients ai(x) are as follows:

1!a1 = 1,

2!a2 =
(

N−1
N

− 1
2
|x|2
)
,

3!a3 =
(

(N−1)(N−2)
N2 − 3(N−2)

2N
|x|2 + 1

2
gijkxixjxk

)

,

4!a4 =
(

(N−1)(N−2)(N−3)
N3 − 3(N−2)(N−3)

N2 |x|2 + 3(N−2)
4N

|x|4+

+ 2(N−2)
N

gijkxixjxk − 3
4
gijkgklmxixjxlxm

)

,

. . .

(146)
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where gijk stands for the structure constants of SU(N)
For example, the Bloch vector space of a 3-level quantum system is defined by

the first three constraints of (146), which gives, that it is the ball of radius 3√
3

subject
to the additional constraint

36 − 9|x|2 + 9gijkxixjxk ≥ 0.

Substituting the values of gijk, the above equation reads

−8 + 18|x|2 − 27x3(x
2
4 + x2

5 − x2
6 − x2

7) + 6
√

3x3
8−

−9
√

3[2(x2
1 + x2

2 + x2
3) − (x2

4 + x2
5 + x2

6 + x2
7)]−

−54(x1x4x6 + x1x5x7 + x2x5x6 − x2x4x7) ≥ 0.

It defines a proper convex asymmetric subset of the ball in R
N2−1 having radius 3√

3
.

It is easy to see, that by increasing the dimension of the state space, the number
of additional conditions to be regarded increases, which makes it less tractable.
For numerical simulations and experiments, the approach for handling Bloch vector
space of N level systems presented in this work (section 5.1.4) is easier, and more
straightforward.

A.3 Examples of QP feedback design

A.3.1 Example with a rank deficient M matrix

Consider the following open generalized mass-action law system

ẋ1 = 0.5x1 − x2.25
1 − 0.5x1.5

1 x0.25
2 + u1

ẋ2 = x2 − 0.5x1.75
2 + u2

(147)

where x1 and x2 are the concentrations of chemical species A1 and A2 ([moles
m3 ]), while

u1 and u2 (the manipulable inputs) are their volume-specific component mass inflow
rates ([ moles

m3sec
]). The above two differential equations originate from the component

mass conservation equations constructed for a perfectly stirred balance volume [23]
under the following modeling assumptions:

1. constant temperature and overall mass,

2. constant physico-chemical properties (e.g. density),

3. presence of an inert solvent in a great excess,

4. presence of the following reaction network:

• autocatalytic generation of the species A1 and A2 (e.g. by polymer degra-
dation when they are the monomers and the polymers are present in a
great excess) giving rise to the reaction rates 0.5x1 and x2 (the first terms
in the right-hand sides) respectively,
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• a self-degradation of these species described by the reaction rates −x2.25
1

and −0.5x1.75
2 (the second terms on the right-hand sides) respectively,

• a catalytic degradation of the specie A1 catalyzed by specie A2 that
corresponds to −0.5x1.5

1 x0.25
2 in the first equation only (the third term).

The control aim is to drive the system to a positive equilibrium

x∗
1 = 2.4082

moles

m3
, x∗

2 = 16.3181
moles

m3
.

This goal can be achieved e.g. by the following nonlinear feedback:

u1 = 0.5x1x
0.75
2

u2 = 0.5x1.25
1 x2 + 0.5x0.5

1 x1.25
2 .

(148)

The above inputs being the component mass flow rates fed to the system (they are
both positive) are needed for compensating for the degradation of the specie A1 and
A2.

By substituting (148) into (147), we obtain the controlled system that is a QP
system with the following matrices

A =

[
−1 0.5 −0.5
0.5 −0.5 0.5

]

(149)

B =





1.25 0
0 0.75

0.5 0.25



 , L =

[
0.5
1

]

(150)

The eigenvalues of the Jacobian matrix of the system at the equilibrium point are
−6.4076 and −0.7768.

Since the rank of M = B ·A in this case is only 2, we can only use the algorithm
described in [17] to prove that the LMI (22) is not feasible in this case.

However, by solving (46) using again the algorithm described in [36] we find that
we can use the following time-reparametrization:

ω =
[
−0.25 −0.5

]T
(151)

and the diagonal matrix containing the coefficients of the Lyapunov function is:

C = diag([1 2 2 2]) (152)

The eigenvalues of M̃T · C + C · M̃ in this case are

λ1 = 0, λ2 = 0, λ3 = −4.5, λ4 = −2.5 (153)

which again proves the global stability of the system.
The above example demonstrates how time-reparametrization can be used in the

design of suitable globally stabilizing static feedbacks for nonlinear process systems.
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A.3.2 Feedback design for a simple fermentation process

This example presents a fermentation process similar to the one presented in section
2.2.2, just the reaction kinetics (i.e. function µ(x2)) is different. This one is a
monotonous function of the substrate concentration x2, that results in a simpler
nonlinearity. The system is described by the non-QP input-affine state-space model

ẋ1 = µ(x2)x1 + (XF−x1)F
V

ẋ2 = −µ(x2)x1

Y
+ (SF−x2)F

V

µ(x2) = µmax
x2

KS+x2

,

(154)

where the inlet substrate and biomass concentrations denoted by SF and XF , are
the manipulated inputs. The variables and parameters of the model together with
their units and parameter values are given in Table 6.

The system has a unique locally stable equilibrium point in the positive orthant:
[

x̄1

x̄2

]

=

[
0.6500
0.4950

]

(155)

with steady-state inputs [
X̄F

S̄F

]

=

[
0.6141
4.3543

]

.

By introducing a new differential variable η = 1
KS+x2

one arrives at a third differential
equation

η̇ = − 1
(KS+x2)2

· dx2

dt
= −η2 ·

(

−µmax

Y
x1x2η + (SF−x2)F

V

)

=

= η
(

µmax

Y
x1x2η

2 + F
V

x2η − SF
F
V

η
)

(156)

that completes the ones for x1 and x2. Thus the original system (154) can be
represented by the following three quasi-polynomial differential equations:

ẋ1 = x1 ·
(
−F

V
+ µmaxx2η + F

V
x−1

1 XF

)

ẋ2 = x2 ·
(
−F

V
− µmax

Y
x1η + F

V
x−1

2 SF

)

η̇ = η ·
(

F
V

x2η + µmax

Y
x1x2η

2 − F
V

ηSF

)
.

Using a wise choice of the feedback structure, the quasi-monomials of the closed
loop system may decrease. In our case the feedback structure is chosen to be

XF = k1x1x2η + δ1x1

SF = k2x1x2η + δ2x2.

The closed loop QP system is then

ẋ1 = x1 ·
(
−F

V
+
(
µmax + k1

F
V

)
x2η
)

ẋ2 = x2 ·
(
−F

V
+
(
−µmax

Y
+ k2

F
V

)
x1η
)

η̇ = η ·
(

F
V

x2η +
(

µmax

Y
− k2

F
V

)
x1x2η

2
)
.
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Note, that for the globally stabilizing feedback design phase parameters δ1, and δ2

are set to zero, since they will be used for shifting the equilibrium of the closed loop
system to the original fermenter’s one. It is apparent that the closed loop system
has only 3 quasi-monomials: x2η, x1η, x1x2η

2.
The solution of the BMI problem gives the feedback gain parameters

k1 = −1.5355
k2 = 43.6516,

which makes the system globally asymptotically stable (in the positive orthant) with
the Lyapunov function (20) having parameters:

c1 = 0.0010, c2 = 0.0761, c3 = 0.0760.

The equilibrium (155) of the open loop fermenter can be reset by expressing δ1, and
δ2 from the steady-state equations. This gives δ1 = 1.7152, δ2 = −20.9293, so the
equilibrium point (155) of the fermentation process (154) is globally stabilized.

A.4 Applied mathematical tools

In this section some of the mathematical tools applied throughout the thesis are
described.

A.4.1 Linear and bilinear matrix inequalities

In what follows, linear- and bilinear matrix inequalities are defined as special tools
applied by system- and control theory.

Linear matrix inequality

A (non-strict) linear matrix inequality (LMI) is an inequality of the form

F (x) = F0 +
m∑

i=1

xiFi ≤ 0, (157)

where x ∈ R
m is the variable and Fi ∈ R

n×n, i = 0, . . . ,m are given symmetric
matrices. The inequality symbol in (157) stands for the negative semi-definiteness
of F (x). If the equality is not allowed, then the LMI is termed strict.

One of the most important properties of LMIs is the fact, that they form a
convex constraint on the variables, i.e. the set F = {x | F (x) ≤ 0} is convex and
thus many different kinds of convex constraints can be expressed in this way [6],
[56]. It is important to note that a particular point from the convex solution set F
can be selected using additional criteria (e.g. different kinds of objective functions)
[6]. Standard LMI optimization problems are e.g. linear function minimization,
generalized eigenvalue problem, etc.

Various problems in system- and control theory can be written up as a set of lin-
ear matrix inequalities. For example, the Lyapunov equation connected to the global
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stability of LTI systems. But they also appear in the context of linear parameter-
varying (LPV) systems, or within µ-analysis there are also LMIs solved.

There are several software tools available for solving linear matrix inequalities.
The most widespread ones are in the Matlab LMI Control Toolbox [16]. In spite
of its great popularity it has problems when a non-strict LMI is to be solved. On
the other hand, Scilab (an open source platform for numerical computation, see
http://www.scilab.org) performs far much better for the non-strict case. The algo-
rithm of [36] is also able to handle the rank deficiency of matrices Fi in (157). A
good survey on the available solvers can be found in [63].

Bilinear matrix inequality

A bilinear matrix inequality (BMI) is a diagonal block composed of q matrix in-
equalities of the following form

Gi
0 +

p
∑

k=1

xkG
i
k +

p
∑

k=1

p
∑

j=1

xkxjK
i
kj ≤ 0, i = 1, . . . , q (158)

where x ∈ R
p is the decision variable to be determined and Gi

k, k = 0, . . . , p,
i = 1, . . . , q and Ki

kj, k, j = 1, . . . , p, i = 1, . . . , q are symmetric, quadratic matrices.
The main properties of BMIs are that they are non-convex in x (which makes

their solution numerically much more complicated than that of linear matrix in-
equalities), and their solution is NP-hard [63], so the size of the tractable problems
is limited. However, there exist practically applicable and effective algorithms for
BMI solution [36], [61], or [8]. In Matlab environment the TomLab/PENBMI solver
[37] can be used effectively to solve bilinear matrix inequalities. Similarly to the
LMIs, additional criteria can be used to select a preferred solution point of a feasi-
ble BMI from its solution set.

BMIs are mostly applied in the field of robust control, many problems can be
formulated in the form (158).

A.4.2 Tensor product and its properties

The tensor product [49] of matrices A and B is denoted by A ⊗ B, where

A =






a11 a12 . . . a1n
...

... . . .
...

am1 am2 . . . amn




 ∈ C

m×n

and B ∈ C
p×q. The value of A ⊗ B is the block matrix

A ⊗ B =






a11B a12B . . . a1nB
...

... . . .
...

am1B am2B . . . amnB




 ∈ C

mp×nq

The most important properties of tensor product are as follows.
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• A ⊗ (B + C) = A ⊗ B + A ⊗ C, if B and C are of the same size

• (A + B) ⊗ C = A ⊗ C + B ⊗ C, if A and B are of the same size

• (cA) ⊗ B = A ⊗ (cB) = c(A ⊗ B)

• (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

• (A ⊗ B)T = AT ⊗ BT

Additional properties of tensor product for quadratic matrices:

• if A ∈ C
n×n and B ∈ C

k×k with eigenvalues λ1, . . . , λn and µ1, . . . , µk, respec-
tively, then the eigenvalues of A ⊗ B are in the form λiµj, i = 1, . . . , n, j =
1, . . . , k

• Tr(A ⊗ B) = Tr(A)Tr(B)

• det(A ⊗ B) = (det(A))k(det(B))n

• A⊗B is invertible iff A and B are both invertible, and (A⊗B)−1 = A−1⊗B−1

A.5 Tables

x1 biomass concentration [g
l
]

x2 substrate concentration [g
l
]

SF substrate feed concentration [g
l
]

XF biomass feed concentration [g
l
]

F inlet feed flow-rate 3.2089 [ l
h
]

V volume 4.0000 [l]
Y yield coefficient 0.5000 -
µmax, kinetic parameter 1.0000 [ 1

h
]

K1 kinetic parameter 0.0300 [g
l
]

K2 kinetic parameter 0.5000 [ l
g
]

Table 5: Variables and parameters of the fermenter model with non-monotonous
kinetics (14)
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x1 biomass concentration [g
l
]

x2 substrate concentration [g
l
]

SF substrate feed concentration [g
l
]

XF biomass feed concentration [g
l
]

F inlet feed flow-rate 1.0000 [ l
h
]

V volume 97.8037 [l]
Y yield coefficient 0.0097 -
µmax, kinetic parameter 0.0010 [ 1

h
]

Ks kinetic parameter 0.5 [ l
g
]

Table 6: Variables and parameters of the fermenter model (154)

x1 biomass concentration [g
l
]

x2 substrate concentration [g
l
]

F inlet feed flow-rate 2 [ l
h
]

V volume 1 [l]
SF substrate feed concentration [g

l
]

Y yield coefficient 1 -
µmax, kinetic parameter 1 [ 1

h
]

Table 7: Variables and parameters of the fermenter model (79)

A.6 Spinsim function reference

The syntax of the most important functions used in Spinsim is listed here.

density2vector.m

Converts a density matrix to a Bloch vector.
Syntax: b=density2vector(D)
Input:

D: density matrix

Output:

b: Bloch vector

vector2density.m

Converts a Bloch vector to a density matrix.
Syntax: D=vector2density(b)
Input:

b: Bloch vector
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Output:

D: density matrix

measure.m

Performs a measurement on a quantum system.
Syntax: [Dt,r]=measure(D0,E1,E2)
Input:

D0: density matrix before the measurement

E1,E2: projection operators of the (von Neumann) measurement

Output:

Dt: density matrix after the measurement

r: outcome of the measurement (±1)

spinsim.m

Function spinsim is for simulating spin 1
2

quantum systems. The function plots the
trajectory of the system in a Bloch sphere (see Figure 23) . Measurement is also
implemented in the simulator. Syntax: [xf,Df]=spinsim(Dx0,stepsize,u,c)
Input:

Dx0: Inital state of the system. Dx0 can be either a 3 dimensional column vector
with absolute value smaller than 1 or a density matrix.

stepsize: The stepsize of the simulation (since it simulates discrete time quantum sys-
tems)

u: A double matrix with 3 rows. Column i contains the value of the magnetic
field in each direction at timestep i (see Figure 22). For example, u(1, 2) is
the strength of the magnetic field in direction x at the second timestep. It is
very important to note that the input vector also contains information about
measurement. If the value of u(i, j) equals to π exactly, then the spin in
direction i is measured at time j. This causes jumps in the trajectory. They
are marked with yellow/orange.

c: Optional parameter. If the value of c is ’manual ’, then the user has to click
on the figure for the next simulation step. If it is ’auto’, then the simulator is
stepping automatically. If the value is ’none’ then the simulation runs in one
step. The default value is ’auto’.

Output:

xf: The value of the Bloch vector at the end of the simulation.

Df: Density matrix of the qubit at the end of the simulation.
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Figure 22: Input for spinsim

Figure 23: State trajectory of a qubit in spinsim

spinsim2.m

Function for simulating 2 coupled spin 1/2 particles. The function plots the trajec-
tory of the system in seven Bloch spheres. Measurements are also implemented in
the simulator. Syntax: [Df]=spinsim2(D0,H0,stepsize,u1,u2,c)
Input:

D0: Inital state of the system. D0 can only be a density matrix of size 4 × 4.

H0: Inner Hamiltonian function of the system. H0 must be a self-adjoint matrix
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of size 4 × 4.

stepsize: The stepsize of the simulation (since it simulates discrete time quantum sys-
tems)

u1: A double matrix of size 3 × steps. Column i contains the value of the mag-
netic field applied on the first spin in each direction at timestep i. It is very
important to note that the input vector also contains information about mea-
surement. If the value of u1(i, j) equals to π exactly, then the spin in direction
i is measured at time j on the first spin. This causes jumps in the trajectory
- they are marked with yellow.

u2: A double matrix of size 3×steps. Column i contains the value of the magnetic
field applied on the first spin in each direction at timestep i.

c: Optional parameter. If the value of c is ’manual ’, then the user has to click
on the figure for the next simulation step. If it is ’auto’, then the simulator is
stepping automatically. If the value is ’none’ then the simulation runs in one
step. The default value is ’auto’.

Output:

Df: Density matrix of the qubit at the end of the simulation.

qbayes.m

Function qbayes performs a bayesian parameter estimation on a quantum system
(spin 1

2
) having no dynamics. The function computes and plots the probability

density function for the three spin component x1, x2 and x3 (Figure 24). The
joint (3 dimensional) probability density function is also computed and plotted , see
Fihure 25.
Syntax: est=qbayes(n,D)

Input:

n: number of measurements to be performed in each spin direction (i.e. 3n mea-
surements are performed)

D: density matrix representing the state of the spin 1
2

quantum system to be
estimated

Output:

est: estimated Bloch vector

qls.m

Function qls performs a least squares parameter estimation on a quantum system
(spin 1

2
) having no dynamics. The function computes and plots the least squares

point estimates for the three spin component x1, x2 and x3. In the Bloch-sphere plot
(Figure 26), the red vector is the original Bloch-vector and the blue is the estimated
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Figure 24: Probability density functions for the Bloch vector components

Figure 25: Joint p.d.f. for as the Bayesian estimate

one.
Syntax: est=qls(n,D)

Input:

n: number of measurements to be performed in each spin direction (i.e. 3n mea-
surements are performed)

D: density matrix representing the state of the spin 1
2

quantum system to be
estimated

Output:
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Figure 26: Point estimate of the LS estimator

est: estimated Bloch vector
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[12] R. Dı́az-Sierra, B. Hernández-Bermejo, and V. Fairén. Graph-theoretic de-
scription of the interplay between non-linearity and connectivity in biological
systems. Mathematical Biosciences, 156:229–253, 1999.

110



[13] R. Ellis. Entropy, large deviations, and statistical mechanics. Springer-Verlag,
1985.

[14] A. Figueiredo, I. M. Gleria, and T. M. Rocha. Boundedness of solutions and
Lyapunov functions in quasi-polynomial systems. Physics Letters A, 268:335–
341, 2000.
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[51] B. Pongrácz, G. Szederkényi, and K.M. Hangos. An algorithm for determining
a class of invariants in quasi-polynomial systems. Computer Physics Commu-
nications, 175:204–211, 2006.

[52] J. R. Raol, G. Girija, and J. Singh. Modelling and Parameter Estimation of
Dynamic Systems. IEE, 2004.
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